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Borders

I In case of “classical sets”, there is no ambiguity, whether an
element belongs to a set or not: either a ∈ X or a /∈ X

I The border between the set X and its complement X c is
edge-sharp: no element can sit in the border

I In case of “rough sets”, the situation is different. The border
B(X ) = XN \ XH is the area of uncertainty.

I If a ∈ B(X ), then both in X and outside X there are elements
to which a is R-related – here R is the relation representing
our knowledge

I Based on this difference, the structure of rough sets is quite
different from the structure of the “classical” sets



Definition of rough sets

Let R be a relation representing our knowledge and let rough
approximations be formed by this knowledge.

I A rough equivalence relation: two sets X and Y are
roughly equivalent, denoted by X ≡ Y , if XH = Y H and
XN = Y N

I This means that X ≡ Y ⇐⇒ the set X and Y look exactly
similar in view of the knowledge R

I The equivalence classes [X ]≡ = {Y | X ≡ Y } of ≡ are called
rough sets

I This really is the original (1981) definition by Pawlak

I The relation ≡ can be viewed as an indiscernibility relation,
but between sets.



Example

Let U = {a, b, c} and let E be an equivalence on U such that its
equivalence classes are {a, b} and {c}.

X XH XN

∅ ∅ ∅
{a} ∅ {a, b}
{b} ∅ {a, b}
{c} {c} {c}
{a, b} {a, b} {a, b}
{a, c} {c} U
{b, c} {c} U
U U U

Rough sets are:

(i): {∅}, (ii): {{a}, {b}}, (iii): {{c}},
(iv): {{a, b}}, (v): {{a, c}, {b, c}}, (vi): {U}.



Ordered set of rough sets

I Considering rough sets as equivalence classes of sets is not
very practical.

I On the other hand, each rough set [X ]≡ is uniquely
determined by the approximation pair (XH,XN).

I We use approximation pairs instead of equivalence classes

I The set of all rough sets is RS = {(XH,XN) | X ⊆ U}
I We obtain an ordered set RS = (RS ,≤) by ordering RS by

the coordinatewise order:

(XH,XN) ≤ (Y H,Y N) ⇐⇒ XH ⊆ Y H and XN ⊆ Y N



Example

In our previous example,

RS ={(∅, ∅), (∅, {a, b}), ({a, b}, {a, b}),
({c}, {c}), ({c},U), (U,U)}

The ordered set RS has the following structure:

(∅, ∅)

({c}, {c})

({c}, U)

(U,U)

(∅, {a, b})

({a, b}, {a, b})

It seems to be isomorphic to 2× 3



Structure of “classical sets”

I The ordered set (℘(U),⊆) of all subsets of U is a complete
lattice such that for all H ⊆ ℘(U):∨

H =
⋃
H and

∧
H =

⋂
H

I In particular, X ∨ Y = X ∪ Y and X ∧ Y = X ∩ Y

I (℘(U),∪,∩, c , ∅,U) is a Boolean algebra, where X c = U \ X
is the complement of X .

I It is known from the general lattice-theory that a Boolean
lattice is atomistic if and only if it is completely distributive

I Atoms of ℘(U) are the singletons {x} for x ∈ U.

I ℘(U) ∼= 2U .



Structure of “classical sets”

Let U = {a, b, c}. The complete lattice (℘(U),⊆) is:

∅

{b, c}

{b}

{a, c}

{a} {c}

{a, b}

U



The structure of RS in case of an equivalence relation

I Let RS be determined by an equivalence relation E .

I The cartesian product ℘(U)× ℘(U) = {(X ,Y ) | X ,Y ⊆ U}
is a complete lattice such that for each subset {(Xi ,Yi )}i∈I :∨
i∈I

(Xi ,Yi ) =
(⋃
i∈I

Xi ,
⋃
i∈I

Yi

)
and

∧
i∈I

(Xi ,Yi ) =
(⋂
i∈I

Xi ,
⋂
i∈I

Yi

)
I RS is a complete sublattice of ℘(U)× ℘(U)

I This is not easy to prove – it needs to show for a subset
{(Xi

H,Xi
N)}i∈I ⊆ RS , that e.g. (

⋃
i∈I Xi

H,
⋃

i∈I Xi
N) is a

rough set, that is, there exists a set Z such that

ZH =
⋃
i∈I

Xi
H and ZN =

⋃
i∈I

Xi
N



The structure of RS in case of an equivalence relation

I ℘(U)× ℘(U) is (completely) distributive ⇒ RS is
(completely) distributive

I The set of completely join-irreducible elements of RS is

{(∅,E (x)) : |E (x)| ≥ 2} ∪ {(E (x),E (x)) : x ∈ U}

I The set of atoms of RS is

{(∅,E (x)) : |E (x)| ≥ 2} ∪ {({x}, {x}) : E (x) = {x}}

I RS is spatial, but not atomistic

I RS is not complemented, so it is not a Boolean lattice nor an
ortholattice



Regular double Stone algebras

I In a bounded lattice L, x∗ is a pseudocomplement of x , if
x ∧ x∗ = 0 and x ∧ a = 0 implies a ≤ x∗ (unique)

I (XH,XN)∗ = (XNc ,XNc)

I Dual pseudocomplement x+: x ∨ x+ = 1 and x ∨ a = 1
implies a ≥ x+

I (XH,XN)+ = (XHc ,XHc)

I Double Stone algebra: x∗ ∨ x∗∗ = 1 and x+ ∧ x++ = 0

I A double Stone algebra is regular if x∗ = y∗ and x+ = y+

imply x = y .

I If determined by an equivalence, RS forms a regular double
Stone algebra

I Regular double Stone algebras can be identified with 3-valued
 Lukasiewicz–Moisil algebras and semi-simple Nelson algebras



Rough sets determined by equivalences

I RS ∼= 2I × 3J , where I = set of singleton E -classes and J =
set of non-singleton E -classes.

Remark

I The identity relation IdU of U can be seen to represent
complete knowledge in the sense that each element has a full
identity, that is, every element can be discerned from the
others.

I (XH,XN) = (X ,X ) for all X ⊆ U.

I This means that RS can be identified with ℘(U), and
RS ∼= ℘(U) ∼= 2U in case E = IdU .



Example

Let R be the following equivalence on U = {a, b, c , d , e, f , g , h}

ca bd e fh g

C2 C3C1

The rough set algebra RS is:

(C1,C1)

(∅,C1)

(C3,C3)

(∅,C3)
(C2,C2)

∼= 2× 3× 3



Some essential articles for equivalences

[1] Jacek Pomyka la and Janusz A. Pomyka la, The Stone algebra
of rough sets, Bulletin of Polish Academy of Sciences.
Mathematics 36 (1988), 495–512.

[2] Mai Gehrke and Elbert Walker, On the structure of rough
sets, Bulletin of Polish Academy of Sciences. Mathematics 40
(1992), 235–245.

[3] Stephen D. Comer, On connections between information
systems, rough sets, and algebraic logic, Algebraic Methods in
Logic and Computer Science, Banach Center Publications, no.
28, 1993, pp. 117–124.



Rough sets defined by quasiorders

We will consider results from these articles:

[1] Jouni Järvinen, Sándor Radeleczki, and Laura Veres, Rough
sets determined by quasiorders, Order 26 (2009), 337–355

[2] Jouni Järvinen and Sándor Radeleczki, Representation of
Nelson algebras by Rough Sets Determined by Quasiorders,
Algebra Universalis 66 (2011), 163–179.

[3] Jouni Järvinen, Piero Pagliani, Sándor Radeleczki, Information
completeness in Nelson algebras of rough sets induced by
quasiorders, Studia Logica 101 (2013), 1073–1092.

[4] Jouni Järvinen and Sándor Radeleczki, Monteiro spaces and
rough sets determined by quasiorder relations: Models for
Nelson algebras, Fundamenta Informaticae 131 (2014)
205–215.



RS induced by a quasiorder

Theorem

If R is a quasiorder on a non-empty set U, then RS is a complete
sublattice of ℘(U)× ℘(U), that is,∨

i∈I
(XH

i ,X
N
i ) =

(⋃
i∈I

XH
i ,
⋃
i∈I

XN
i

)
and ∧

i∈I
(XH

i ,X
N
i ) =

(⋂
i∈I

XH
i ,
⋂
i∈I

XN
i

)

Since RS is a complete sublattice of ℘(U)× ℘(U), we may write:

Corollary

RS is a completely distributive lattice



In case of quasiorders, RS is algebraic

An element x of a complete lattice L is compact if for every
S ⊆ L, x ≤ ∨ S =⇒ x ≤ ∨F for some finite F ⊆ S .

A complete lattice L is algebraic, if its every element is a join of
compact elements.

Example

(a) (℘(U),⊆) is an algebraic lattice. Within this complete lattice,
the compact elements are exactly the finite sets.
(b) ℘(U)× ℘(U) is an algebraic lattice, because the product of
algebraic lattices is algebraic.

Because any complete sublattice of an algebraic lattice is algebraic,
we may write:

Corollary

RS is an algebraic lattice.



Properties of algebraic lattices

For any lattice L, the following are known to be equivalent:

(a) L is isomorphic to an Alexandrov topology

(b) L is algebraic and completely distributive

(c) L is distributive and doubly algebraic, that is, also the dual Ld

of L is algebraic

(d) L is algebraic, distributive and spatial

I Since RS is algebraic and completely distributive, it has the
properties (a)–(d)

I In particular, RS is isomorphic to some Alexandrov topology

I How to get this Alexandrov topology we will find later

I RS forms a Heyting algebra.



Completely join-irreducible elements

Proposition

Let RS be determined by a quasiorder.

(a) The set of completely join-irreducible elements of RS is

J = {(∅, {x}N) | |R(x)| ≥ 2} ∪ {(R(x),R(x)N) | x ∈ U}.

(b) The lattice RS is spatial



Kleene algebras

A Kleene algebra is a structure (A,∨,∧,∼, 0, 1) such that A is a
0,1-bounded distributive lattice and for all x , y ∈ A:

(K1) ∼∼x = x

(K2) x ≤ y if and only if ∼y ≤ ∼x

(K3) x ∧ ∼x ≤ y ∨ ∼y

A bounded distributive lattice A with ∼ satisfying (K1) and (K2) is
a De Morgan algebra

Proposition

The algebra RS = (RS ,∪,∩,∼, (∅, ∅), (U,U)) is a Kleene algebra,
where ∼ is defined

∼(XH,XN) = (X cH,X cN) = (XNc ,XHc)



Constructive logic with strong negation (Nelson logic) I

I Constructive logic with strong negation was introduced by
Nelson (1949) and independently by Markov (1950). It is
often called simply as Nelson logic.

I It is an extension of the intuitionistic propositional logic by
strong negation ∼.

I There are generally two different ways to refute a sentence A.

I One way is by reductio ad absurdum: by proving that A
implies absurdum. This role of negation is played both by the
intuitionistic negation and by the classical negation

I ¬A is defined to be A→ ⊥



Constructive logic with strong negation (Nelson logic) II

I Another way to refute A is to construct a counterexample of
A. The intuitive reading of ∼A is “a counterexample of A”.

I Sentence A may have many counterexamples and each of
them have to contradict A. For instance, a counterexample of
the sentence “This apple is red” is for instance “This apple is
green” or “This apple is yellow”

I Axioms can be interpreted as “algorithms” of constructing
counterexamples of compound sentences by means of given
counterexamples of their components.

I The name strong negation comes from the fact that the
formula ∼A→ ¬A is a theorem of the logic.



Nelson logic – or Constructive logic with strong negation

(N1) ∼A→ (A→ B)
a counterexample of A contradicts A, that is, A ∧ ∼A implies

everything

(N2) ∼(A→ B)↔ A ∧ ∼B
a counterexample of A→ B can be constructed by the conjunction

of A with a counterexample of B

(N3) ∼(A ∧ B)↔ ∼A ∨ ∼B
a counterexample of a conjunction is a disjunction of

counterexamples of its components

(N4) ∼(A ∨ B)↔ ∼A ∧ ∼B
a counterexample of a disjunction is a conjunction of

counterexamples of its components

(N5) ∼¬A↔ A
A is a counterexample of ¬A

(N6) ∼∼A↔ A
A is a counterexample of a counterexample of A



Quasi-Nelson and Nelson algebras

I A quasi-Nelson algebra is a Kleene algebra (A,∨,∧,∼, 0, 1) such
that for each pair a and b of its elements, the element

a⇒ ∼a ∨ b

exists. Here ⇒ denotes the Heyting implication in (A,≤):

c ≤ a⇒ b iff a ∧ c ≤ b

I This element is denoted a→ b and called weak relative
pseudocomplement. Hence,

c ≤ a→ b iff a ∧ c ≤ ∼a ∨ b

I Therefore, every Kleene algebra whose underlying lattice is a
Heyting algebra forms a quasi-Nelson algebra.

Proposition

RS = (RS ,∪,∩,∼, (∅, ∅), (U,U)) is a quasi-Nelson algebra.



Nelson algebras of rough sets determined by quasiorders

A Nelson algebra is a quasi-Nelson algebra (A,∨,∧,∼,→, 0, 1)
satisfying:

(a ∧ b)→ c = a→ (b → c)

Theorem

For any quasiorder, (RS ,∨,∧,→,∼, 0, 1) is a Nelson algebra such
that:

(XH,XN) ∨ (Y H,Y N) = (XH ∪ Y H,XN ∪ Y N)

(XH,XN) ∧ (Y H,Y N) = (XH ∩ Y H,XN ∩ Y N)

∼(XH,XN) = (X cH,X cN) = (XNc ,XHc)

(XH,XN)→ (Y H,Y N) = ((XHc ∪ Y H)H,XHc ∪ Y N)

0 = (∅, ∅)
1 = (U,U)



Weak negation and semi-simple Nelson algebras

I In each Nelson algebra, an operation ¬ can be defined as
¬a = a→ 0. The negation ¬ is called weak negation.

I A Nelson algebra is semi-simple if a ∨ ¬a = 1

I It is known that RS defines a semi-simple Nelson algebra
⇐⇒ RS is defined by an equivalence



Kleene algebra defined on an algebraic lattice

If a Kleene algebra A = (A,∨,∧,∼, 0, 1) is defined on an algebraic
lattice, then actually the underlying lattice A is doubly algebraic
and distributive. Thus, A is isomorphic to an Alexandrov topology.

Then, we may define for any j ∈ J the element

g(j) =
∧
{x ∈ A | x � ∼j }

The map g : J → J satisfies:

(J1) if x ≤ y , then g(y) ≤ g(x)

(J2) g(g(x)) = g(x)

(J3) x ≤ g(x) or g(x) ≤ x

(J4) x , y ≤ g(x), g(y) implies that there is z ∈ J such that

x , y ≤ z ≤ g(x), g(y)



Example

I Let us consider the Kleene algebra such that:
∼0 = 1, ∼a = e, ∼b = d , ∼c = c

I Because the algebra is finite and distributive, it defines a Heyting
algebra and so it forms a quasi-Nelson algebra.

I J = {a, b, d , e} and the map g is such that g(a) = d and g(b) = e

ba

0

1

d e

c

I Now a, b ≤ g(a), g(b), but there exists no k ∈ J such that
a, b ≤ k ≤ g(a), g(b) =⇒ This is not a Nelson algebra



Represention theorem

Theorem

If A is a Nelson algebra defined on an algebraic lattice, then there
exists a set U and a quasiorder R on U such that A ∼= RS.

fe

1

0

b

d

c

a

∼e = b

∼1 = 0

∼f = a

∼d = c

∼c = d

∼b = e

∼0 = 1

∼a = f

For instance, a→ b := a⇒ (∼a ∨ b) = a⇒ (f ∨ b) = a⇒ f = 1,
where x ⇒ y :=

∨{
z | z ∧ x ≤ y

}
is the Heyting implication.



Example of the construction

fe

b

d

a g(a) = e

g(b) = f

g(f) = b

g(d) = d

g(e) = a



Example of the construction

We define a mapping ρ : J → J :

ρ(j) =

{
j if j ≤ g(j)
g(j) otherwise

In terms of ρ, we define a quasiorder R on U = J by

x R y ⇐⇒ ρ(x) ≤ ρ(y).

a be f

d

fe

b

d

a ρ(a) = a

ρ(b) = b

ρ(d) = d

ρ(e) = a

ρ(f) = b



Example of the construction

a be f

d

RS

(∅, bf)(∅, ae)

(∅, abef)

(d, U)

(∅, ∅)

(U,U)

(ade, U) (bdf, U)

The relation R



Monteiro spaces and Alexandrov topologies of rough sets
defined by quasiorders

Let M = (X ,≤, g) be a structure such that (X ,≤) is a partially
ordered set and g is a map on X satisfying:

(J1) if x ≤ y , then g(y) ≤ g(x),

(J2) g(g(x)) = g(x),

(J3) x ≤ g(x) or g(x) ≤ x ,

(J4) if x , y ≤ g(x), g(y), then there is z ∈ X such that
x , y ≤ z ≤ g(x), g(y).

M is called a Monteiro space.

Proposition

Let A be a Nelson algebra defined on an algebraic lattice. If we
define an order / on J by setting

x / y ⇐⇒ y ≤ x in A,

then (J , /, g) is a Monteiro space.



Results by Vakarelov (1977)1

I For an ordered set (X ,≤), we denote by U(X ) the set of all
upward-closed subsets of X .

I U(X ) is an Alexandrov topology. It forms also a T0-space:
for x 6= y , there is an open set which contains one of these
points, but not the other.

I Each Monteiro space M = (X ,≤, g) defines a Nelson algebra

(U(X ),∪,∩,→,∼, ∅,X ),

where:

∼A = {x ∈ X | g(x) /∈ A} and A→ B = A⇒ (∼A ∪ B)

I Above ⇒ is the Heyting implication of U(X )

1Dimiter Vakarelov, Notes on N-lattices and constructive logic with strong
negation, Studia Logica 36 (1977), 109–125.



Example

4 5

6

1

8

2

7

3

1234567

2

123458

1234578

123457

2357

235

13

1234568

123456

12346 12357

1246

124

12

1 3

23

12351234

123

12345

∅

J

Nelson algebra A (J , ⊳) Nelson algebra U(J)

7 = ∼6

5

8

∼1

4

1 2 3

∼3 ∼2∼2

∼8

∼5 ∼4

6 = ∼7

∼X = {a | g(a) /∈ X}



Proposition

The following structures can be considered equivalent, because
they determine each other “up-to-isomorphism”:

(i) Rough sets by quasiorders

(ii) Nelson algebras defined on algebraic lattices

(iii) Nelson algebras defined on T0-spaces that are Alexandrov
topologies

(iv) Monteiro spaces



Last results for quasiorder-based rough sets

Proposition

Let A be any Nelson algebra. Then, there exists a set U and a
quasiorder R on U such that A is isomorphic to a subalgebra of RS.

Theorem

Let φ be a formula of Nelson logic. TFAE:

1. φ is a theorem

2. φ is valid in every finite rough set-based Nelson algebra
determined by a quasiorder.



Rough sets determined by tolerances

The considered results are from the article:

[1] Jouni Järvinen and Sándor Radeleczki, Rough sets determined
by tolerances, Approximate Reasoning 55 (2014), 1419–1438



Rough sets determined by tolerances

Let us consider the following tolerance:

ba c d e

RS is not necessarily a lattice:

(∅, c)

(∅, ae)

(abde, U)

(∅, ∅)

(∅, ab) (∅, de)

(∅, cde)(∅, abc)

(∅, U)

(de, U)(ab, U)

(abc, U) (cde, U)

(abcd, U) (bcde, U)

(de, de)

(cde, cde)

(ab, ab)

(abc, abc)

(bcd, U)

(U,U)

(∅, e)(∅, a)



Rough sets determined by tolerances

A complete subdirect product L of an indexed family of
complete lattices {Li}i∈I is a complete sublattice of the direct
product

∏
i∈I Li such that the canonical projections πi are all

surjective, that is, πi (L) = Li .

The projections πi are complete lattice homomorphisms, that is,
they preserve all meets and joins.

Proposition

RS is a complete lattice if and only if it is a complete subdirect
product of the complete lattices ℘(U)H and ℘(U)N.



Lattice operations in RS I

Let R be a tolerance on U. Recall that

I ℘(U)H is a complete lattice such that for H ⊆ ℘(U):∨
X∈H

XH =
( ⋃
X∈H

XH)NH and
∧
X∈H

XH =
⋂
X∈H

XH

I ℘(U)N is a complete lattice such that for H ⊆ ℘(U):∨
X∈H

XN =
⋃
X∈H

XN and
∧
X∈H

XN =
( ⋂
X∈H

XN)HN



Lattice operations in RS II

We have that if RS is a complete lattice, then it must be a
complete sublattice of the product ℘(U)H × ℘(U)N

Let (Xi
H,Xi

N) ⊆ RS. The meet and join are defined by:∧
i∈I

(Xi
H,Xi

N) =
(⋂

i∈I
Xi

H,
(⋂
i∈I

Xi
N)HN)

and ∨
i∈I

(Xi
H,Xi

N) =
((⋃

i∈I
Xi

H)NH,⋃
i∈I

Xi
N
)



Example

Let U = {a, b, c , d} and let R be the following tolerance

a

d

b

c

Then RS has the following 11 elements: (∅, ∅), (∅, {a, b, c}),
(∅, {a, b, d}), (∅, {a, c , d}), (∅, {b, c , d}), (∅,U), ({a},U), ({b},U),
({c},U), ({d},U), (U,U)

The lattice is not distributive



A condition under which RS is a complete lattice

(C) For any R-path (a1, . . . , a5) of 5 elements, there exist
1 ≤ i , j ≤ 5 such that |i − j | ≥ 2 and ai R aj .

a1 a2 a3 a4 a5

Theorem

If R is a tolerance satisfying (C), then RS is a complete lattice.



Rough sets determined by tolerances

Theorem

Let R be a tolerance on U. Then RS is an algebraic completely
distributive lattice if and only if R is induced by an irredundant
covering of U.



Example: tolerance induced by an irredundant covering

Let U = {1, 2, 3, 4, 5} and suppose that R is the following
tolerance on U:

5 31 4

2

The tolerance R is induced by the irredundant covering
{R(1),R(2),R(3)}.



Example: tolerance induced by an irredundant covering

(∅, ∅)

(∅, {2, 4, 5})
(∅, {3, 5})

(∅, {1, 4})

(∅, U)

(∅, {2, 3, 4, 5})
(∅, {1, 3, 4, 5})

(∅, {1, 2, 4, 5})

({1}, {1, 2, 4, 5})

({1}, U)

({3}, {2, 3, 4, 5})

({3}, U)({2}, U)

({1, 3}, U) ({2, 3, 5}, U)({1, 2, 4}, U)

(U,U)



Rough sets determined by tolerances

Proposition

Let R be a tolerance induced by an irredundant covering of U.
Then,

(RS,∨,∧,∼, (∅, ∅), (U,U))

is a Kleene algebra, where

∼(XH,XN) = (X cH,X cN) = (XNc ,XHc).

This algebra is always also a quasi-Nelson algebra – but a Nelson
algebra only if the R is an equivalence.


