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Relations

I Let U be a nonempty set, called often universe (or universe
of discourse). This is the set of elements (or objects) we are
interested in.

I Let R be a binary relation on U representing some
knowledge about the elements in U. Binary relation R
consists of ordered pairs (a, b) such that a R b.

I The relation R is interpreted to represent some knowledge
about the objects in U.

Example

Let us consider a datatable (database table, Excel table, etc.)
representing some information about human beings. The table
may contain columns such that weight, height, age, gender,
home town, etc. Two objects are R-related if values for all the
above attributes are the same.



Relations

Example

In the previous example, we defined the relation R in such a way
that two objects are R-related, if they have exactly the same
values for all attributes.
We may also define a relation such that two objects are R-related
if their values are “close enough”. For instance,

a R b ⇐⇒ |height(a)− height(b)| ≤ ε,

where ε is a suitable threshold. In the next figure, ε equals 3 cm.
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Relations

Example

The statement “a is preferred to b” is generally understood to
mean that someone chooses a over b. In this case, the universe U
consists of different choices and a R b tells that a is preferred over
b. For instance, someone could say that: “I prefer sleeping over
running”.



Rough approximations based on binary relations

Let R be a binary relation on U, and let us denote for all x ∈ U,

R(x) = {y ∈ U | x R y}

The upper approximation of X ⊆ U is

XN = {x ∈ U | R(x) ∩ X 6= ∅}

and the lower approximation of X is

XH = {x ∈ U | R(x) ⊆ X}

The set B(X ) = XN \ XH is the boundary of X



Rough approximations

The lower approximation of
XH can be viewed as the set
of elements that certainly
are in X when observed
through the knowledge R,
because all elements
R-related to them are in X .

The upper approximation
XN can be viewed as the set
of elements that possible are
in X , because in X is at least
one element R-related to
them.



Proposition

If R is a binary relation on U, then following assertions hold.

(a) The maps H and N are mutually dual, i.e.
XHc = X cN and XNc = X cH

(b) The boundary of any set is equal to the boundary of its
complement.

(c) The maps H and N are order-preserving.

Proof.

(a) x ∈ XHc ⇔ x /∈ XH ⇔ R(x) 6⊆ X ⇔ R(x) ∩ X c 6= ∅ ⇔
x ∈ X cN. Further, XNc = X ccNc = X cHcc = X cH.

(b) B(X ) = XN \ XH = XN ∩ XHc = X cHc ∩ X cN = X cN \ X cH

= B(X c).

(c) Suppose X ⊆ Y . If x ∈ XH, then R(x) ⊆ X ⊆ Y , i.e. x ∈ Y H.
If x ∈ XN, then R(x) ∩ Y ⊇ R(x) ∩ X 6= ∅, i.e. x ∈ Y N.



We denote

℘(U)H = {XH | X ⊆ U} and ℘(U)N = {XN | X ⊆ U}.

Proposition

The ordered sets (℘(U)N,⊆) and (℘(U)H,⊆) are dually
isomorphic.

Proof.

We show that the map φ : XN 7→ X cH is an order-isomorphism
between (℘(U)N,⊆) and (℘(U)H,⊇).

XN ⊆ Y N ⇔ φ(XN) = X cH = XNc ⊇ Y Nc = Y cH = φ(Y N).
Thus, φ is an order-embedding.

If XH ∈ ℘(U)H, then φ(X cN) = X ccH = XH, i.e., φ is onto.



Example

Let U = {a, b, c , d}.

U

{d}

∅

℘(U)H

{a, d} {b, d} {c, d}

∅

{a, b, c}

U

{a, b} {b, c}{a, c}

℘(U)N

c

a b

d

R

I (℘(U)H,⊆) and (℘(U)N,⊆) seem to be lattices (we will study in
detail what kind of lattices these are).

I ℘(U)H and ℘(U)N are not distributive, because they contain M3 as
a sublattice.

I These lattices are not complemented.



I We denote by R−1 the inverse relation of R and

R−1(x) = {y | y R x}.

I We define

XM = {x ∈ U | R−1(x) ∩ X 6= ∅}

and
XO = {x ∈ U | R−1(x) ⊆ X}.

I Note that

{x}N = {y | R(y) ∩ {x} 6= ∅} = {y | x ∈ R(y)} = R−1(x)

I Similarly, {x}M = R(x)



Galois connection

I Galois connections are pairs of maps which enable us to
move back and forth between two ordered sets.

I Galois connections tie different structures firmly and when a
Galois connection is found between two structures, we
immediately know that they have much in common.

I After an element is mapped to the other structure and back, a
certain stability is reached in such a way that further
mappings give the same results.

I We will show that the pairs (N, O) and (M, H) form Galois
connections. Several observations and properties of rough
approximations follow from this.



Galois connections

Definition (“flip-flop” property)

For two partially ordered sets (P,≤) and (Q,≤), a pair (f , g) of
maps f : P → Q and g : Q → P is called a Galois connection
between P and Q if for all p ∈ P and q ∈ Q,

f (p) ≤ q ⇐⇒ p ≤ g(q).

Such a mapping f is sometimes called residuated mapping. The
mapping g is called the residual mapping of f .

Lemma

The pair (f , g) is a Galois connection between P and Q iff

(a) p ≤ (g ◦ f )(p) for all p ∈ P and (f ◦ g)(q) ≤ q for all q ∈ Q

(b) the maps f and g are order-preserving



Galois connections I

Let (f , g) be a Galois connection between two complete lattices P
and Q.

1. f ◦ g ◦ f = f and g ◦ f ◦ g = g .

2. The map g ◦ f is a (lattice-theoretical) closure operator on
P (extensive, order-preserving, idempotent) and the set of
g ◦ f -closed elements is g(Q), that is, (g ◦ f )(P) = g(Q)

3. The map f ◦ g is a (lattice-theoretical) interior operator on
Q (inflationary, order-preserving, idempotent) and the set of
f ◦ g -open elements is f (P), that is, (f ◦ g)(Q) = f (P).

4. The map f is a complete join-morphism and g is a complete
meet-morphism, that is,

f
(∨

S
)

=
∨

f (S) and g
(∧

T
)

=
∧

g(T )

for S ⊆ P and T ⊆ Q.



Galois connections II

5. The image sets f (P) and g(Q) are order-isomorphic.

6. The ordered set f (P) is a complete lattice such that for all
S ⊆ f (P) (⊆ Q),∨

S =
∨

Q S and
∧

S = f
(
g
(∧

Q S
))

= f
(∧

P g
(
S
))
.

7. The ordered set g(Q) is a complete lattice such that for all
S ⊆ g(Q) (⊆ P),∨

S = g
(
f
(∨

P S
))

= g
(∨

Q f
(
S
))

and
∧

S =
∧

P S .



Galois connections of rough approximations

The ordered set (℘(U),⊆) is a complete lattice such that∨
H =

⋃
H and

∧
H =

⋂
H

for all H ⊆ ℘(U).

Proposition

For any binary relation R on U, the pairs (N, O) and (M, H) are
order-preserving Galois connections on (℘(U),⊆).

Proof.

As noted, the maps X 7→ XN and X 7→ XO are order-preserving.

If x ∈ XON, there exists y ∈ XO such that (x , y) ∈ R. Because
y ∈ XO and (y , x) ∈ R−1, we have x ∈ X . Hence, XON ⊆ X . This
also gives XMHc = X cON ⊆ X c , i.e., X ⊆ XMH.



What this then means? I

1. XNON = XN, XMHM = XM, XONO = XO, XHMH = XH

2 a. The map X 7→ XNO is a closure operator. The set of closed
sets is ℘(U)O, i.e. {XNO | X ⊆ U} = ℘(U)O.

2 b. The map X 7→ XMH is a closure operator. The set of closed
sets is ℘(U)H, i.e. {XMH | X ⊆ U} = ℘(U)H.

3 a. The map X 7→ XON is an interior operator. The set of open
sets is ℘(U)N, i.e. {XON | X ⊆ U} = ℘(U)N.

3 b. The map X 7→ XHM is an interior operator. The set of open
sets is ℘(U)M, i.e. {XHM | X ⊆ U} = ℘(U)M.



What this then means? II

4 a. For H ⊆ ℘(U):( ⋃
X∈H

X
)N

=
⋃
X∈H

XN and
( ⋃

X∈H
X
)M

=
⋃
X∈H

XM

Note that this implies that XN =
⋃

x∈X{x}N =
⋃

x∈X R−1(x)
and XM =

⋃
x∈X{x}M =

⋃
x∈X R(x)

4 b.
( ⋂

X∈H
X
)H

=
⋂
X∈H

XH and
( ⋂

X∈H
X
)O

=
⋂
X∈H

XO

5. ℘(U)N ∼= ℘(U)O and ℘(U)M ∼= ℘(U)H



What this then means? III

6 a. The ordered set (℘(U)N,⊆) is a complete lattice such that∨
X∈H

XN =
⋃
X∈H

XN and
∧
X∈H

XN =
( ⋂

X∈H
XN
)ON

6 b. The ordered set (℘(U)M,⊆) is a complete lattice such that∨
X∈H

XM =
⋃
X∈H

XM and
∧
X∈H

XM =
( ⋂

X∈H
XM
)HM



What this then means? IV

7 a. The ordered set (℘(U)H,⊆) is a complete lattice such that∧
X∈H

XH =
⋂
X∈H

XH and
∨
X∈H

XH =
( ⋃

X∈H
XH
)MH

7 b. The ordered set (℘(U)O,⊆) is a complete lattice such that∧
X∈H

XO =
⋂
X∈H

XO and
∨
X∈H

XO =
( ⋃

X∈H
XO
)NO



Different types of relations

A binary relation R on U is said to be:

left-total if for all x ∈ U, the exists y ∈ U such that x R y .

reflexive if for all x ∈ U, x R x .

symmetric if x R y implies y R x .

antisymmetric if x R y and y R x imply x = y .

transitive if x R y and y R z imply x R z .

a tolerance if it is reflexive and symmetric

a quasiorder (or a preorder) if it is reflexive and transitive

a partial order if it is reflexive, antisymmetric and transitive

an equivalence if it is reflexive, symmetric and transitive



Example

Let E be an equivalence on U such that {a, b} and {c, d} are
E -equivalence classes.
We know that XN ∪ Y N = (X ∪ Y )N, but XN ∩ Y N ⊇ (X ∩ Y )N,
and the inclusion can be proper!
Let X = {a, c} and Y = {b, d}. Then XN = U and Y N = U, and
XN ∩ Y N = U, but (X ∩ Y )N = ∅N = ∅.
Analogously, we have XH ∩ Y H = (X ∩ Y )H, but
XH ∪ Y H ⊆ (X ∪ Y )H.
Also this inclusion can be proper, because XH = ∅, Y H = ∅, and
XH ∪ Y H = ∅. But: (X ∪ Y )H = UH = U.



Correspondences: left-total relations

Proposition

If R is a binary relation on U, then the following are equivalent:

(a) R is left-total;

(b) XH ⊆ XN for all X ⊆ U.

Proof.

(a) ⇒ (b): Let x ∈ XH. Then R(x) ⊆ X , which gives
R(x) ∩ X = R(x) 6= ∅, i.e., x ∈ XN.

(b) ⇒ (a): Assume that R is not left-total, i.e. R(x) = ∅ for some
x ∈ U. This means that x ∈ XH and x /∈ XN for this particular x
and for any set X ⊆ U, a contradiction!



Correspondences: reflexive relations

Proposition

TFAE:

(a) R is reflexive;

(b) X ⊆ XN for all X ⊆ U;

(c) XH ⊆ X for all X ⊆ U.

Proof.

(a) ⇒ (b): If x ∈ X , then x ∈ R(x) ∩ X 6= ∅, i.e. x ∈ XN.

(b) ⇒ (c): X c ⊆ X cN = XHc gives XH ⊆ X .

(c) ⇒ (a): If R is not reflexive, there is x ∈ U such that
(x , x) /∈ R. Let us consider the set X = U \ {x}. Now (x , y) ∈ R
implies y ∈ X . Thus, x ∈ XH and x /∈ X , a contradiction!



Correspondences: symmetric relations

Proposition

TFAE:

(a) R is symmetric;

(b) (N, H) is a Galois connection on (℘(U),⊆).

Proof.

(a) ⇒ (b): If R is symmetric, then XN = XM and XH = XO for all
X ⊆ U. Recall that (N, O) is a Galois connection.
(b) ⇒ (a): If R is not symmetric, then for some x , y ∈ U,
(x , y) ∈ R, but (y , x) /∈ R. Let X = {x}. For all z ∈ U, (y , z) ∈ R
implies z /∈ X . This gives y /∈ XN. Hence, x ∈ X and x /∈ XNH, a
contradiction!



Correspondences: transitive relations

Proposition

TFAE:

(a) R is transitive;

(b) XNN ⊆ XN for all X ⊆ U;

(c) XH ⊆ XHH for all X ⊆ U.

Proof.

(a) ⇒ (b): Let x ∈ XNN. There is y ∈ XN such that (x , y) ∈ R.
Since y ∈ XN, there is z ∈ X such that (y , z) ∈ R. So, also
(x , z) ∈ R and x ∈ XN.
(b) ⇒ (c): XHHc = X cNN ⊆ X cN = XHc , which gives XH ⊆ XHH.
(c) ⇒ (a): If R is not transitive, there are x , y , z ∈ U such that
(x , y) ∈ R and (y , z) ∈ R, but (x , z) /∈ R. Let X = U \ {z}. Then
for all w ∈ U, (x ,w) implies w ∈ X . Thus, x ∈ XH. Obviously,
y /∈ XH and hence x /∈ XHH, a contradiction!



Correspondences for M and O

I Note that R is reflexive if and only if R−1 is reflexive,

I Similar conditions hold also for symmetry and transitivity.

I We can state similar correspondences between R and the
operators X 7→ XM and X 7→ XO.

I However, with left-/right-total relations we have to make the
following exception:

(∀X ⊆ U) XO ⊆ XM ⇐⇒ R−1 is left-total

⇐⇒ R is right-total



Properties of rough approximations: tolerances

Let R be a tolerance on U and X ,Y ⊆ U.

(a) XH ⊆ X ⊆ XN

(b) (N, H) is an order-preserving Galois connection on (℘(U),⊆):

XN ⊆ Y ⇐⇒ X ⊆ Y H

(c) XNHN = XN and XHNH = XH.

Proposition

Let (F ,G ) be a Galois connection on (℘(U),⊆). There exists a
tolerance R on U such that F equals N and G equals H if and only
if the following conditions hold for all x , y ∈ U:

(i) x ∈ F ({x});

(ii) x ∈ F ({y}) implies y ∈ F ({x}).



Lattice structures of approximations: tolerances

Let R be a tolerance.

(a) (℘(U)H,⊆) forms a complete lattice such that for H ⊆ ℘(U):∨
X∈H

XH =
( ⋃
X∈H

XH)NH and
∧
X∈H

XH =
⋂
X∈H

XH

(b) (℘(U)N,⊆) forms a complete lattice such that for H ⊆ ℘(U):∨
X∈H

XN =
⋃
X∈H

XN and
∧
X∈H

XN =
( ⋂
X∈H

XN)HN
(c) The maps XN 7→ XNH and XH 7→ XHN are isomorphisms

between ℘(U)N and ℘(U)H — these are now also self-dual



Distributivity and modularity

A lattice is distributive if for all x , y , z :

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A lattice is distributive iff none of its sublattices is isomorphic to
M3 or N5.
A modular lattice is a lattice that satisfies the condition:

x ≤ b implies x ∨ (a ∧ b) = (x ∨ a) ∧ b.

A lattice L is modular iff none of its sublattices is isomorphic to N5.

N5
M3



Example

b

d c

a

Tolerance R
∅

{a} {b} {c} {d}

U

℘(U)H

=⇒ The lattices ℘(U)H and ℘(U)N are not always distributive



Example

ba c d

Tolerance R

∅

U

{a} {d}

{a, b} {c, d}

℘(U)H

=⇒ The lattices ℘(U)H and ℘(U)N are not always modular



Approximation lattices as ortholattices

An ortholattice is a bounded lattice equipped with an
orthocomplementation:

(O1) x ≤ y implies y⊥ ≤ x⊥

(O2) x⊥⊥ = x

(O3) x ∨ x⊥ = 1 and x ∧ x⊥ = 0

Lemma

Let R be a tolerance

(a) ℘(U)N is an ortholattice such that ⊥ : XN 7→ XNcN

(b) ℘(U)H is an ortholattice such that > : XH 7→ XHcH

Proposition

A complete lattice L forms an ortholattice if and only if there exists
a set U and a tolerance R on U such that L ∼= ℘(U)H ∼= ℘(U)N.



Irredundant coverings

A collection H of nonempty subsets of U is called a covering of U
if
⋃H = U.

A covering H is irredundant if H \ {X} is not a covering for any
X ∈ H.

Each covering H of U defines a tolerance
⋃{X 2 | X ∈ H}, called

the tolerance induced by H.

Proposition

Let R be a tolerance induced by a covering H ⊆ ℘(U). Then, the
following assertions are equivalent:

(a) H is an irredundant covering;

(b) H ⊆ {R(x) | x ∈ U}



Example

Any tolerance R on U determines an undirected graph G = (U,R).

a
b

d

f

g

c

Tolerance R

e

The family H = {{a, b, d , e}, {b, c , d , f }, {d , e, f , g}} induces R.
This covering H is irredundant, because R(a) = {a, b, d , e},
R(c) = {b, c, d , f }, R(g) = {d , e, f , g}.



Definition

1. A complete lattice L satisfies the join-infinite distributive
law (JID) if for any S ⊆ L and x ∈ L,

x ∧
(∨

S
)

=
∨
{x ∧ y | y ∈ S}. (JID)

2. The meet-infinite distributive law (MID) is defined:

x ∨
(∧

S
)

=
∧
{x ∨ y | y ∈ S}. (MID)

3. A complete lattice L is completely distributive if arbitrary
joins distribute over arbitrary meets

Proposition

For a tolerance R on U, the isomorphic complete lattices ℘(U)H

and ℘(U)N are completely distributive if and only if R is induced
by an irredundant covering of U.



Definition

I A bounded lattice is complemented if every element a has a
complement a′: a ∨ a′ = 1 and a ∧ a′ = 0.

I A complement is unique if the lattice is distributive

I Boolean lattice: distributive and complemented lattice

I Boolean algebra: (B,∨,∧, ′, 0, 1)

Remark

A distributive ortholattice is a Boolean lattice. Each Boolean
lattice is trivially an ortholattice.



Blocks of a tolerance

I A nonempty subset X of U is an R-preblock if X 2 ⊆ R.

I An R-block is a maximal R-preblock.

I The relation R is completely determined by its blocks, i.e.,
a R b if and only if there exists a block B such that a, b ∈ B.

Lemma

If R is a tolerance induced by an irredundant covering H, then

H = {R(x) | R(x) is a block}.

For all x ∈ U, R(x) is an R-block if and only if R(x) is an
R-preblock, i.e. a clique of the graph G = (U,R).



Let L be a lattice with a least element 0. The lattice L is
atomistic, if any element of L is the join of atoms below it. It is
well known that a complete Boolean lattice is atomistic if and only
if it is completely distributive.

Proposition

Let R be a tolerance induced by an irredundant covering of U.

(a) ℘(U)N and ℘(U)H are atomistic Boolean lattices

(b) At(℘(U)N) = {R(x) | R(x) is a block }
(c) At(℘(U)H) = {R(x)H | R(x) is a block }



Topological spaces I

A topological space (U, T ) consists of a set U and a family
T ⊆ ℘(U) such that

(TS1) ∅ ∈ T and U ∈ T ,

(TS2) X ∩ Y ∈ T for any sets X ,Y ∈ T , and

(TS3)
⋃H ∈ T for any subfamily H ⊆ T .

The family T is called a topology on U and the members of T are
open sets. The complement of an open set is called a closed set

An operator C : ℘(U)→ ℘(U) is a Kuratowski closure operator
if for any X ,Y ⊆ U,

(K1) X ⊆ C (X ),

(K2) C (C (X )) = C (X ),

(K3) C (X ∪ Y ) = C (X ) ∪ C (Y ), and

(K4) C (∅) = ∅.



Topological spaces II

I If T is a topology on U, then the operator defined by

C (X ) =
⋂
{B | X ⊆ B and B is closed}

is a Kuratowski closure operator.

I Conversely, for a Kuratowski closure operator C on U, the
family

{C (X ) | X ⊆ U}
determines a topological space whose closed sets are exactly
these sets.

I Kuratowski closure operators are in 1-to-1 correspondence
with topologies.



Heyting algebras of topologies

I A Heyting algebra L is a bounded lattice such that for all
a, b ∈ L, there is a greatest element x of L with a ∧ x ≤ b.

I This element is the relative pseudocomplement of a with
respect to b, and is denoted a→ b.

I A complete lattice is a Heyting algebra if and only if it
satisfies (JID). Then,

a→ b =
∨
{c | a ∧ c ≤ b}

I Since T is closed under arbitrary unions and finite
intersections, the complete lattice (T ,⊆) satisfies (JID): for
all H ⊆ T ,

X ∩
(⋃
H
)

=
⋃
{X ∩ Y | Y ∈ H}.

Thus, every topology T determines a Heyting algebra



Properties of rough approximations: quasiorders

An Alexandrov topology is a topology T that contains also all
arbitrary intersections of its members. Let T be an Alexandrov
topology T on U. Then, for each X ⊆ U, there exists the smallest
neighbourhood

NT (X ) =
⋂
{Y ∈ T | X ⊆ Y }.

In particular, the smallest neighbourhood of a point x ∈ U is
denoted by NT (x). The family

BT = {NT (x) | x ∈ U}

is the smallest base of the Alexandrov topology T . This means
that every member X of T can be expressed as a union of some
(or none) elements of BT , i.e. X =

⋃{NT (x) | x ∈ X}. In
addition, BT is smallest such set.



Complete lattices of Alexandrov topologies

I Every Alexandrov topology T defines a complete lattice:∨
H =

⋃
H and

∧
H =

⋂
H

for all H ⊆ T
I (T ,⊆) is a distributive lattice

I In a complete lattice L, an element a is completely
join-irreducible if a =

∨
S implies a ∈ S for every S ⊆ L.

I The set of completely join-irreducible elements of T is
J = {N(x) | x ∈ U}.

I The lattice T is spatial, i.e. each element can be given as a
join of join-irreducibles.



Alexandrov closure operator

I We say that a closure operator is an Alexandrov closure
operator if it satisfies for all H ⊆ T ,

C
(⋃
H
)

=
⋃

C (H)

I As in case of topologies and Kuratowski closure operators,
there is 1-to-1 correspondence between Alexandrov topologies
and Alexandrov closure operators.

Closure operators

Alexandrov closure operators

Kuratowski closure operators



Alexandrov topologies and quasiorders

I There is a 1-to-1 correspondence between quasiorders and
Alexandrov topologies.

I For a quasiorder R on the set U, we can define an Alexandrov
topology TR on U consisting of all “R-closed” subsets of U
with respect to the relation R:

TR = {A ⊆ U | (∀x , y ∈ U) x ∈ A & x R y =⇒ y ∈ A}



Alexandrov topologies and quasiorders

I The set R(x) is the smallest neighbourhood of the point x in
the Alexandrov topology TR

I Trivially, y ∈ R(x) if and only if x R y .

I This hints how we may determine quasiorders by means of
Alexandrov topologies

I If T is an Alexandrov topology, then the quasiorder RT is
defined by

x RT y ⇐⇒ y ∈ NT (x).

I The correspondences R 7→ TR and T 7→ RT are 1-to-1.



Alexandrov topologies and quasiorders

I For a quasiorder R, the rough approximations satisfy for all
X ⊆ U:

XNO = XN, XMH = XM, XHM = XH, XON = XO.

I The approximations determine two Alexandrov topologies:

℘(U)N = ℘(U)O and ℘(U)H = ℘(U)M

I Note that ℘(U)H is the same as TR above (R-closed subsets)

I Clearly, these topologies are dual, i.e. for all X ⊆ U,

X ∈ ℘(U)N ⇐⇒ X c ∈ ℘(U)H



Alexandrov topologies and quasiorders

For the Alexandrov topology ℘(U)N = ℘(U)O:

(i) N : ℘(U)→ ℘(U) is the smallest neighbourhood operator.

(ii) M : ℘(U)→ ℘(U) is the Alexandrov closure operator. Note
that the family of closed sets for the topology ℘(U)N is
℘(U)H; — and vice versa.

(iii) O : ℘(U)→ ℘(U) is the Alexandrov interior operator, i.e., it
maps each set to the greatest open set contained into the set
in question.

(iv) The set { {x}N | x ∈ U} = {R−1(x) | x ∈ U} is the smallest
base.



Alexandrov topologies and quasiorders

Similarly, for the topology ℘(U)H = ℘(U)M:

(i) M : ℘(U)→ ℘(U) is the smallest neighbourhood operator.

(ii) N : ℘(U)→ ℘(U) is the Alexandrov closure operator.

(iii) H : ℘(U)→ ℘(U) is the Alexandrov interior operator.

(iv) The set { {x}M | x ∈ U} = {R(x) | x ∈ U} is the smallest
base.



Lattice structures of approximations: equivalences

I Equivalence E is a tolerance and a quasiorder.

I For an equivalence E , XNH = XN and XHN = XH.

I Therefore, ℘(U)H = ℘(U)N forms a completely distributive
Boolean lattice — in fact, a complete field of sets.

I The equivalence classes of E are the atoms.


