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Relations

» Let U be a nonempty set, called often universe (or universe
of discourse). This is the set of elements (or objects) we are
interested in.

> Let R be a binary relation on U representing some
knowledge about the elements in U. Binary relation R
consists of ordered pairs (a, b) such that a R b.

» The relation R is interpreted to represent some knowledge
about the objects in U.

Example

Let us consider a datatable (database table, Excel table, etc.)
representing some information about human beings. The table
may contain columns such that weight, height, age, gender,
home town, etc. Two objects are R-related if values for all the
above attributes are the same.



Relations

Example

In the previous example, we defined the relation R in such a way
that two objects are R-related, if they have exactly the same

values for all attributes.
We may also define a relation such that two objects are R-related

if their values are “close enough”. For instance,

aRb <= |height(a) — height(b)| < e,

where ¢ is a suitable threshold. In the next figure, € equals 3 cm.
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Relations

Example

The statement “a is preferred to b" is generally understood to
mean that someone chooses a over b. In this case, the universe U
consists of different choices and a R b tells that a is preferred over
b. For instance, someone could say that: “I prefer sleeping over
running”.



Rough approximations based on binary relations

Let R be a binary relation on U, and let us denote for all x € U,
R(x)={y € Ul xRy}
The upper approximation of X C U is
XAt ={xceU|R(Xx)NX #0}
and the lower approximation of X is
XY ={xeU]|R(x)C X}

The set B(X) = X4\ X"V is the boundary of X



Rough approximations

The lower approximation of
XY can be viewed as the set
of elements that certainly
are in X when observed
through the knowledge R,
because all elements
R-related to them are in X.

The upper approximation
XA can be viewed as the set
of elements that possible are
in X, because in X is at least
one element R-related to
them.



Proposition

If R is a binary relation on U, then following assertions hold.
(a) The maps Y and * are mutually dual, i.e.
XVC — XCA and XAC — XCV
(b) The boundary of any set is equal to the boundary of its
complement.

(¢) The maps ¥ and * are order-preserving.

Proof.

Q) xeX"ex¢ X" RX)ZXe RX)NX£D<

X € XA, Further, XA¢ = XccAc = xcvee — XcV,

(b) B(X) — XA \XV — XA vac — Xch ﬂXCA — XCA \XCV
= B(X°).

(c) Suppose X C Y. If xe XV, then R(x) C X CY,ie xeY".
If x € X4, then R(x)NY D R(x)NX #0, i.e. x € Y4, O



We denote

p(U)T ={XT | X C U} and p(U)* ={X*|XC U}

Proposition

The ordered sets (p(U)*,C) and (p(U)Y, Q) are dually
isomorphic.

Proof.

We show that the map ¢: X4 — XY is an order-isomorphism
between (p(U)4, C) and (p(U)Y, D).

XA C YA o ¢(X‘) — XY — XAc D YAC — ycV ¢(YA)
Thus, ¢ is an order-embedding.

If XY € p(U)Y, then ¢(X4) = XY = XV, i.e., ¢ is onto.



Example
Let U = {a, b,c,d}.

{a,d} {b,d}

{d}

R o(U)"

{c,d}

{a, b}

ov

{b,c}

> (p(U)Y, Q) and (p(U)*, C) seem to be lattices (we will study in
detail what kind of lattices these are).

> o(U)Y and p(U)A are not distributive, because they contain M3 as

a sublattice.

> These lattices are not complemented.
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We denote by R™! the inverse relation of R and

R (x) ={y |y Rx}.

We define
Xt ={xeU|RYx)NX #0}
and
X" ={xecU|R(x)C X}
Note that

DA ={y RN {x} # 0} = {y | x € R(y)} = R(x)
Similarly, {x}* = R(x)



Galois connection

» Galois connections are pairs of maps which enable us to
move back and forth between two ordered sets.

» Galois connections tie different structures firmly and when a
Galois connection is found between two structures, we
immediately know that they have much in common.

» After an element is mapped to the other structure and back, a
certain stability is reached in such a way that further
mappings give the same results.

» We will show that the pairs (4,V) and (,") form Galois
connections. Several observations and properties of rough
approximations follow from this.



Galois connections

Definition ( “flip-flop” property)

For two partially ordered sets (P, <) and (Q, <), a pair (f,g) of
maps f: P — Q and g: Q@ — P is called a Galois connection
between P and Q if for all p € P and g € Q,

flp) <qg < p<g(q).

Such a mapping f is sometimes called residuated mapping. The
mapping g is called the residual mapping of f.

Lemma
The pair (f, g) is a Galois connection between P and Q iff
(a) p<(gof)(p) forallpe P and (fog)(q) <q forallqge Q

(b) the maps f and g are order-preserving



Galois connections |

Let (f, g) be a Galois connection between two complete lattices P
and Q.

l. fogof=fandgofog=g.

2. The map g o f is a (lattice-theoretical) closure operator on
P (extensive, order-preserving, idempotent) and the set of
g o f-closed elements is g(Q), that is, (g o f)(P) = g(Q)

3. The map f o g is a (lattice-theoretical) interior operator on
Q (inflationary, order-preserving, idempotent) and the set of
f o g-open elements is f(P), that is, (f o g)(Q) = f(P).

4. The map f is a complete join-morphism and g is a complete
meet-morphism, that is,

FINS)=\/f(S) and g(AT)=Ag(T)

forSCPand T C Q.



Galois connections I

5. The image sets f(P) and g(Q) are order-isomorphic.

6. The ordered set f(P) is a complete lattice such that for all
SCf(P) (< Q)

\/5:\/@5 and A\S= f(g(/\QS)) = f(/\Pg(S))‘

7. The ordered set g(Q) is a complete lattice such that for all
S Cg(Q) (€ P),

VS=£(F(VpS)) =&(Vof(5)) and AS=ApS.



Galois connections of rough approximations

The ordered set (p(U), <) is a complete lattice such that

VH={JH and AH=H
for all H C p(U).

Proposition

For any binary relation R on U, the pairs (*,V) and (*,Y) are

V) a
order-preserving Galois connections on (p(U), C).
Proof.

As noted, the maps X — X4 and X +— XV are order-preserving.

If x € XVA, there exists y € XV such that (x, y) € R. Because
y € XV and (y,x) € R, we have x € X. Hence, XV4 C X. This
also gives X2Y¢ = XVA C X¢ ie., X C X°V. O



What this then means? |

3b.

) XAVA — XA, XAVA — XA, XVAV — XV’ XVAV _ XV

. The map X — X4V is a closure operator. The set of closed

sets is p(U)Y, i.e. {X2V | X C U} = p(U)".

. The map X — XY is a closure operator. The set of closed

sets is p(U)Y, i.e. {X2Y | X C U} = p(U)".

. The map X — XV4 is an interior operator. The set of open

sets is p(U)A, i.e. {XVA| X C U} = p(U)r.

The map X — XV% is an interior operator. The set of open
sets is p(U)%, i.e. {XY2 | X C U} = p(U)~.



What this then means? |l

4 a. For?—[Cp(U

<XLéJHX> U X4 and (XLGJHX>A - Ux

XeH

Note that this |mpI|es that X4 = J ex{x}* = Usex R™

and X* = LJXEX{X}A - UXEX R(X)

4b. (ﬂx)': ﬂX'and(ﬂX)v: N x°

XeH XeH XeH XeH

1(x)



What this then means? Il

6 a. The ordered set (p(U)*, C) is a complete lattice such that

\/ x*=J X* and /\x‘:(ﬂx‘)m

XeH XeH XeH XeH

6 b. The ordered set (p(U)*,C) is a complete lattice such that

\/ x*=[J X* and /\xﬂz(ﬂxﬂ)'A

XeH XeH XeH XeH



What this then means? IV

7 a. The ordered set (p(U)Y, C) is a complete lattice such that

A X"= (X" and \/X':(UX')

XeH XeH XeH XeH

AV

7 b. The ordered set (p(U)Y,C) is a complete lattice such that

A X7 = (] X" and \/XV:(UXV)Av

XeH XeH XeH XeH



Different types of relations

A binary relation R on U is said to be:
left-total if for all x € U, the exists y € U such that xR y.
reflexive if for all x € U, x R x.
symmetric if x Ry implies y R x.
antisymmetric if xRy and y Rx imply x = y.
transitive if xRy and y Rz imply xR z.
a tolerance if it is reflexive and symmetric
a quasiorder (or a preorder) if it is reflexive and transitive
a partial order if it is reflexive, antisymmetric and transitive

an equivalence if it is reflexive, symmetric and transitive



Example

Let E be an equivalence on U such that {a, b} and {c,d} are
E-equivalence classes.

We know that X4 U Y4 = (XU Y)4 but XAN Y4 D (XNY)4,
and the inclusion can be proper!

Let X ={a,c} and Y = {b,d}. Then X4 =U and Y* = U, and
XANYA=U, but(XNY)*=04=0.

Analogously, we have XY N YY = (XN Y)Y, but
X'uyYYC(XuY)V.

Also this inclusion can be proper, because XY =0, YY = (), and
XTUYY=0. But: (XUY)" =U" = U.



Correspondences: left-total relations

Proposition
If R is a binary relation on U, then the following are equivalent:

(a) R is left-total;
(b) XY C XA for all X C U.

Proof.

(a) = (b): Let x € XY. Then R(x) C X, which gives

R(x)NX = R(x) #0, i.e.,, x € X4,

(b) = (a): Assume that R is not left-total, i.e. R(x) = () for some

x € U. This means that x € XY and x ¢ X* for this particular x
and for any set X C U, a contradiction! O



Correspondences: reflexive relations

Proposition
TFAE:

(a) R is reflexive;
(b) X C X4 forall X C U;
(¢) XY C X forall X C U.

Proof.

(a) = (b): If x € X, then x € R(x)N X #£0, i.e. x € X4.
(b) = (c): X C X4 = XV¢ gives XY C X.

(c) = (a): If R is not reflexive, there is x € U such that

(x,x) ¢ R. Let us consider the set X = U\ {x}. Now (x,y) € R
implies y € X. Thus, x € XY and x ¢ X, a contradiction! O



Correspondences: symmetric relations

Proposition
TFAE:

(a) R is symmetric;
(b) (4,V) is a Galois connection on (p(U), C).

Proof.

(a) = (b): If R is symmetric, then X4 = X% and XY = XV for all
X C U. Recall that (*,") is a Galois connection.

(b) = (a): If R is not symmetric, then for some x,y € U,

(x,y) € R, but (y,x) ¢ R. Let X ={x}. Forallze U, (y,z) e R
implies z ¢ X. This gives y ¢ X*. Hence, x € X and x ¢ X47, a
contradiction! O



Correspondences: transitive relations

Proposition

TFAE:

(a) R is transitive;

(b) XA& C XA forall X C U;
(¢) XY C XYY forall X C U.

Proof.

(a) = (b): Let x € XA4. There is y € X4 such that (x,y) € R.
Since y € X4, there is z € X such that (y,z) € R. So, also

(x,z) € R and x € X4,

(b) = (c): X"VE = XcAA C XA = X<, which gives X7 C X"".
(c) = (a): If R is not transitive, there are x, y, z € U such that
(x,y) € Rand (y,z) € R, but (x,z) ¢ R. Let X = U\ {z}. Then
for all w € U, (x,w) implies w € X. Thus, x € X". Obviously,

y ¢ XY and hence x ¢ X"7, a contradiction! O



Correspondences for © and Vv

Note that R is reflexive if and only if R™1 is reflexive,

v

Similar conditions hold also for symmetry and transitivity.

v

> We can state similar correspondences between R and the
operators X — X® and X — XV.

v

However, with left-/right-total relations we have to make the
following exception:

(VX CU)XY C X® <= R !is left-total
<= R is right-total



Properties of rough approximations: tolerances

Let R be a tolerance on U and X, Y C U.
(a) XY CXC X4

(b) (*,Y) is an order-preserving Galois connection on (p(U), C):
XACY «— XCY"
(c) XAVA = X4 and X"AY = X",

Proposition

Let (F, G) be a Galois connection on (p(U),C). There exists a
tolerance R on U such that F equals * and G equals ¥ if and only
if the following conditions hold for all x,y € U:

(i) x € F({x}),
(ii) x € F({y}) implies y € F({x}).



Lattice structures of approximations: tolerances

Let R be a tolerance.

(a) (p(U)Y, Q) forms a complete lattice such that for H C p(U):
VX'=(UJXxMD*" and AX'=(X
XeH XeH XeH XeH

(b) (p(U)*, C) forms a complete lattice such that for H C p(U):
V xt=Jx* and A Xt=([)x4H™
XeH XeH XeH XeH

(c) The maps X4 — X4Y and XY +— X"4 are isomorphisms
between p(U)* and p(U)Y — these are now also self-dual



Distributivity and modularity

A lattice is distributive if for all x, y, z:
xV(yANz)=(xVy)A(xVz).

A lattice is distributive iff none of its sublattices is isomorphic to
M3 or N5.
A modular lattice is a lattice that satisfies the condition:

x < b implies x V (aA b) = (xV a)Ab.

A lattice L is modular iff none of its sublattices is isomorphic to Ns.

N M



Example

d @

Tolerance R

—> The lattices p(U)Y and p(U)* are not always distributive



Example

{a,b} {e,d}

O=

b
e

Oe

Tolerance R {a} e

— The lattices p(U)Y and p(U)* are not always modular



Approximation lattices as ortholattices

An ortholattice is a bounded lattice equipped with an
orthocomplementation:

(01) x <y implies y*+ < x*
(02) x++ =x
(03) xVxt =1and xAxt =0

Lemma

Let R be a tolerance

(a) @(U)A is an ortholattice such that *: XA s XAcA
(b) (V)Y is an ortholattice such that T: XY — XYV

Proposition

A complete lattice L forms an ortholattice if and only if there exists
a set U and a tolerance R on U such that L = o(U)Y = p(U)A.



Irredundant coverings

A collection H of nonempty subsets of U is called a covering of U
if JH = U.

A covering H is irredundant if 74 \ {X} is not a covering for any
X eH.

Each covering H of U defines a tolerance | J{X? | X € H}, called
the tolerance induced by .

Proposition
Let R be a tolerance induced by a covering H C ©(U). Then, the
following assertions are equivalent:

(a) H is an irredundant covering;
(b) H C{R(x) | x € U}



Example

Any tolerance R on U determines an undirected graph G = (U, R).

Tolerance R

The family H = {{a, b,d, e}, {b,c,d,f},{d,e,f,g}} induces R.
This covering H is irredundant, because R(a) = {a, b, d, e},
R(c) = {b,c,d,f}, R(g) = {d,e f,g}.



Definition

1. A complete lattice L satisfies the join-infinite distributive
law (JID) if forany S C L and x € L,

X/\(\/S):\/{X/\y|y€5}. (JID)
2. The meet-infinite distributive law (MID) is defined:

xV(AS)=A\xvylyeSs}) (MID)

3. A complete lattice L is completely distributive if arbitrary
joins distribute over arbitrary meets

Proposition

For a tolerance R on U, the isomorphic complete lattices p(U)Y

and p(U)* are completely distributive if and only if R is induced
by an irredundant covering of U.



Definition
» A bounded lattice is complemented if every element a has a
complement a’: avVa =1and aAad =0.
» A complement is unique if the lattice is distributive

» Boolean lattice: distributive and complemented lattice
» Boolean algebra: (B,V,A,’,0,1)

Remark

A distributive ortholattice is a Boolean lattice. Each Boolean
lattice is trivially an ortholattice.



Blocks of a tolerance

» A nonempty subset X of U is an R-preblock if X?> C R.
» An R-block is a maximal R-preblock.

» The relation R is completely determined by its blocks, i.e.,
aR b if and only if there exists a block B such that a, b € B.

Lemma

If R is a tolerance induced by an irredundant covering H, then

H ={R(x) | R(x) is a block}.

For all x € U, R(x) is an R-block if and only if R(x) is an
R-preblock, i.e. a clique of the graph G = (U, R).



Let L be a lattice with a least element 0. The lattice L is
atomistic, if any element of L is the join of atoms below it. It is
well known that a complete Boolean lattice is atomistic if and only
if it is completely distributive.

Proposition

Let R be a tolerance induced by an irredundant covering of U.
(a) p(U)* and p(U)Y are atomistic Boolean lattices

(b) At(p(U)*) = {R(x) | R(x) is a block }

(c) At(p(U)Y) ={R(x)Y | R(x) is a block}



Topological spaces |

A topological space (U, 7)) consists of a set U and a family
T C p(U) such that

(TS1) WeTand UEeT,

(TS2) XNY €T foranysets X,Y € T, and

(TS3) |UH € T for any subfamily H C T.

The family 7 is called a topology on U and the members of 7 are
open sets. The complement of an open set is called a closed set

An operator C: p(U) — p(U) is a Kuratowski closure operator
if for any X, Y C U,

(K1) X C C(X),

(K2) C(C(X)) = C(X),

(K3) C(XUY)=C(X)uC(Y), and
(K4) C(0) =0.



Topological spaces Il

» If T is a topology on U, then the operator defined by
C(X)=(){B|XC Band Bis closed}

is a Kuratowski closure operator.

» Conversely, for a Kuratowski closure operator C on U, the
family
{C(X) [ X< U}

determines a topological space whose closed sets are exactly
these sets.

» Kuratowski closure operators are in 1-to-1 correspondence
with topologies.



Heyting algebras of topologies

» A Heyting algebra L is a bounded lattice such that for all
a,b € L, there is a greatest element x of L with a A x < b.

» This element is the relative pseudocomplement of a with
respect to b, and is denoted a — b.

> A complete lattice is a Heyting algebra if and only if it
satisfies (JID). Then,

a—>b:\/{c]a/\c§b}

» Since T is closed under arbitrary unions and finite
intersections, the complete lattice (7, C) satisfies (JID): for
Al HC T,

xn(Jw)=Jxny|Yyen

Thus, every topology 7 determines a Heyting algebra



Properties of rough approximations: quasiorders

An Alexandrov topology is a topology 7 that contains also all
arbitrary intersections of its members. Let 7 be an Alexandrov
topology T on U. Then, for each X C U, there exists the smallest
neighbourhood

Nr(X)=({YeT|XCVY}

In particular, the smallest neighbourhood of a point x € U is
denoted by Nii(x). The family

Br = {Nr(x) | x € U}

is the smallest base of the Alexandrov topology 7. This means
that every member X of 7 can be expressed as a union of some
(or none) elements of Br, i.e. X = [J{N7(x) | x € X}. In
addition, B is smallest such set.



Complete lattices of Alexandrov topologies

v

Every Alexandrov topology 7 defines a complete lattice:

VH=JH and AH=(H

foral HC T
(T, C) is a distributive lattice

v

v

In a complete lattice L, an element a is completely
join-irreducible if a=\/S implies a € S for every S C L.

v

The set of completely join-irreducible elements of 7T is

J ={N(x) | x € U}.

The lattice T is spatial, i.e. each element can be given as a
join of join-irreducibles.

v



Alexandrov closure operator

» We say that a closure operator is an Alexandrov closure
operator if it satisfies for all H C T,

c(Un) =Uecm

> As in case of topologies and Kuratowski closure operators,
there is 1-to-1 correspondence between Alexandrov topologies
and Alexandrov closure operators.

Closure operators

Kuratowski closure operators

Alexandrov closure operators



Alexandrov topologies and quasiorders

» There is a 1-to-1 correspondence between quasiorders and
Alexandrov topologies.

» For a quasiorder R on the set U, we can define an Alexandrov
topology Tr on U consisting of all “R-closed” subsets of U
with respect to the relation R:

Tr={ACU|(Vx,yeU)xceA & xRy =y c A}



Alexandrov topologies and quasiorders

» The set R(x) is the smallest neighbourhood of the point x in
the Alexandrov topology Tr

» Trivially, y € R(x) if and only if xR y.

» This hints how we may determine quasiorders by means of
Alexandrov topologies

» If 7 is an Alexandrov topology, then the quasiorder Ry is
defined by
xRry < y e Ny (x).

» The correspondences R +— Tg and T — Ry are 1-to-1.



Alexandrov topologies and quasiorders

» For a quasiorder R, the rough approximations satisfy for all
X C U:

XAV — XA XAV — XA XVA — XV XVA — XV.

v

The approximations determine two Alexandrov topologies:

p(U)* = p(U)" and  p(U)" = p(U)"

Note that p(U)Y is the same as Tr above (R-closed subsets)

v

v

Clearly, these topologies are dual, i.e. for all X C U,

X € p(U)* = X € p(U)Y



Alexandrov topologies and quasiorders

For the Alexandrov topology p(U)* = p(U)":

(i) *: p(U) = p(U) is the smallest neighbourhood operator.
(it) 2: p(U) — p(U) is the Alexandrov closure operator. Note
that the family of closed sets for the topology p(U)* is

©(U)Y; — and vice versa.
(iii) V: p(U) — p(U) is the Alexandrov interior operator, i.e., it

maps each set to the greatest open set contained into the set
in question.

(iv) The set { {x}* | x € U} = {R71(x) | x € U} is the smallest
base.



Alexandrov topologies and quasiorders

Similarly, for the topology ©(U)Y = p(U)*:
(i) 2: p(U) = p(U) is the smallest neighbourhood operator.
(ii)
(iii) Y: p(U) = p(U) is the Alexandrov interior operator.
)

(iv) The set { {x}* | x € U} = {R(x) | x € U} is the smallest
base.

p(U) — p(U) is the Alexandrov closure operator.



Lattice structures of approximations: equivalences

v

Equivalence E is a tolerance and a quasiorder.
» For an equivalence E, XAY = X4 and X4 = XV.

Therefore, p(U)Y = p(U)* forms a completely distributive
Boolean lattice — in fact, a complete field of sets.

v

v

The equivalence classes of E are the atoms.



