Theoretical Foundations I: Structure of Rough Approximations

Jouni Järvinen

Turku, Finland Jouni.Kalervo.Jarvinen@gmail.com

Milano, 25th July, 2016

Relations

- ▶ Let U be a nonempty set, called often universe (or universe of discourse). This is the set of elements (or objects) we are interested in.
- Let R be a binary relation on U representing some knowledge about the elements in U. Binary relation R consists of ordered pairs (a, b) such that a R b.
- The relation R is interpreted to represent some knowledge about the objects in U.

Example

Let us consider a datatable (database table, Excel table, etc.) representing some information about human beings. The table may contain columns such that **weight**, **height**, **age**, **gender**, **home town**, etc. Two objects are *R*-related if values for all the above attributes are the same.

Relations

Example

In the previous example, we defined the relation R in such a way that two objects are R-related, if they have exactly the same values for all attributes.

We may also define a relation such that two objects are R-related if their values are "close enough". For instance,

$$a R b \iff |\operatorname{height}(a) - \operatorname{height}(b)| \leq \varepsilon$$
,

where ε is a suitable **threshold**. In the next figure, ε equals 3 cm.

Example

The statement "a is preferred to b" is generally understood to mean that someone chooses a over b. In this case, the universe U consists of different choices and a R b tells that a is preferred over b. For instance, someone could say that: "I prefer sleeping over running".

Let R be a binary relation on U, and let us denote for all $x \in U$,

$$R(x) = \{y \in U \mid x R y\}$$

The **upper approximation** of $X \subseteq U$ is

$$X^{\blacktriangle} = \{x \in U \mid R(x) \cap X \neq \emptyset\}$$

and the **lower approximation** of X is

$$X^{\bullet} = \{x \in U \mid R(x) \subseteq X\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The set $B(X) = X^{\blacktriangle} \setminus X^{\blacktriangledown}$ is the **boundary** of X

The lower approximation of X^{\checkmark} can be viewed as the set of elements that certainly are in X when observed through the knowledge R, because all elements *R*-related to them are in X.

The upper approximation

 X^{\blacktriangle} can be viewed as the set of elements that **possible are in** X, because in X is at least one element *R*-related to them.

Proposition

If R is a binary relation on U, then following assertions hold.

- (a) The maps \checkmark and \blacktriangle are mutually dual, i.e. $X^{\blacktriangledown c} = X^{c} \blacktriangle$ and $X^{\blacktriangle c} = X^{c} \checkmark$
- (b) The boundary of any set is equal to the boundary of its complement.
- (c) The maps [▼] and [▲] are order-preserving.

Proof.

(a)
$$x \in X^{\forall c} \Leftrightarrow x \notin X^{\forall} \Leftrightarrow R(x) \not\subseteq X \Leftrightarrow R(x) \cap X^{c} \neq \emptyset \Leftrightarrow x \in X^{c\blacktriangle}$$
. Further, $X^{\blacktriangle c} = X^{cc\blacktriangle c} = X^{c\forall cc} = X^{c\forall}$.

(b)
$$B(X) = X^{\blacktriangle} \setminus X^{\blacktriangledown} = X^{\blacktriangle} \cap X^{\blacktriangledown c} = X^{c \blacktriangledown c} \cap X^{c \blacktriangle} = X^{c \bigstar} \setminus X^{c \blacktriangledown} = B(X^c).$$

(c) Suppose $X \subseteq Y$. If $x \in X^{\checkmark}$, then $R(x) \subseteq X \subseteq Y$, i.e. $x \in Y^{\checkmark}$. If $x \in X^{\blacktriangle}$, then $R(x) \cap Y \supseteq R(x) \cap X \neq \emptyset$, i.e. $x \in Y^{\blacktriangle}$. We denote

$$\wp(U)^{\checkmark} = \{X^{\checkmark} \mid X \subseteq U\} \text{ and } \wp(U)^{\blacktriangle} = \{X^{\bigstar} \mid X \subseteq U\}.$$

Proposition

The ordered sets $(\wp(U)^{\blacktriangle}, \subseteq)$ and $(\wp(U)^{\blacktriangledown}, \subseteq)$ are dually isomorphic.

Proof.

We show that the map $\phi: X^{\blacktriangle} \mapsto X^{c^{\blacktriangledown}}$ is an order-isomorphism between $(\wp(U)^{\bigstar}, \subseteq)$ and $(\wp(U)^{\blacktriangledown}, \supseteq)$. $X^{\bigstar} \subseteq Y^{\bigstar} \Leftrightarrow \phi(X^{\bigstar}) = X^{c^{\blacktriangledown}} = X^{\bigstar c} \supseteq Y^{\bigstar c} = Y^{c^{\blacktriangledown}} = \phi(Y^{\bigstar})$. Thus, ϕ is an order-embedding. If $X^{\blacktriangledown} \in \wp(U)^{\blacktriangledown}$, then $\phi(X^{c^{\bigstar}}) = X^{cc^{\blacktriangledown}} = X^{\blacktriangledown}$, i.e., ϕ is onto.

Example

Let $U = \{a, b, c, d\}$.

- (℘(U)[▼], ⊆) and (℘(U)[▲], ⊆) seem to be lattices (we will study in detail what kind of lattices these are).
- ▶ $\wp(U)^{\checkmark}$ and $\wp(U)^{\blacktriangle}$ are not distributive, because they contain M_3 as a sublattice.
- These lattices are not complemented.

• We denote by R^{-1} the inverse relation of R and

$$R^{-1}(x) = \{y \mid y R x\}.$$

We define

$$X^{\vartriangle} = \{x \in U \mid R^{-1}(x) \cap X \neq \emptyset\}$$

and

$$X^{\triangledown} = \{x \in U \mid R^{-1}(x) \subseteq X\}.$$

Note that

 $\{x\}^{\blacktriangle} = \{y \mid R(y) \cap \{x\} \neq \emptyset\} = \{y \mid x \in R(y)\} = R^{-1}(x)$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Similarly, $\{x\}^{\vartriangle} = R(x)$

- Galois connections are pairs of maps which enable us to move back and forth between two ordered sets.
- Galois connections tie different structures firmly and when a Galois connection is found between two structures, we immediately know that they have much in common.
- After an element is mapped to the other structure and back, a certain stability is reached in such a way that further mappings give the same results.

We will show that the pairs (▲, ▽) and (△, ▼) form Galois connections. Several observations and properties of rough approximations follow from this.

Galois connections

Definition ("flip-flop" property)

For two partially ordered sets (P, \leq) and (Q, \leq) , a pair (f, g) of maps $f: P \rightarrow Q$ and $g: Q \rightarrow P$ is called a **Galois connection** between P and Q if for all $p \in P$ and $q \in Q$,

$$f(p) \leq q \iff p \leq g(q).$$

Such a mapping f is sometimes called **residuated mapping**. The mapping g is called the **residual mapping** of f.

Lemma

The pair (f,g) is a Galois connection between P and Q iff (a) $p \le (g \circ f)(p)$ for all $p \in P$ and $(f \circ g)(q) \le q$ for all $q \in Q$ (b) the maps f and g are order-preserving

Galois connections I

Let (f,g) be a Galois connection between two complete lattices P and Q.

1.
$$f \circ g \circ f = f$$
 and $g \circ f \circ g = g$.

- The map g ∘ f is a (lattice-theoretical) closure operator on P (extensive, order-preserving, idempotent) and the set of g ∘ f-closed elements is g(Q), that is, (g ∘ f)(P) = g(Q)
- 3. The map $f \circ g$ is a (lattice-theoretical) **interior operator** on Q (inflationary, order-preserving, idempotent) and the set of $f \circ g$ -open elements is f(P), that is, $(f \circ g)(Q) = f(P)$.
- 4. The map f is a complete join-morphism and g is a complete meet-morphism, that is,

$$f(\bigvee S) = \bigvee f(S)$$
 and $g(\bigwedge T) = \bigwedge g(T)$

for $S \subseteq P$ and $T \subseteq Q$.

Galois connections II

- 5. The image sets f(P) and g(Q) are order-isomorphic.
- The ordered set f(P) is a complete lattice such that for all S ⊆ f(P) (⊆ Q),

$$\bigvee S = \bigvee_Q S$$
 and $\bigwedge S = f(g(\bigwedge_Q S)) = f(\bigwedge_P g(S)).$

7. The ordered set g(Q) is a complete lattice such that for all $S \subseteq g(Q) \ (\subseteq P)$,

$$\bigvee S = g(f(\bigvee_P S)) = g(\bigvee_Q f(S))$$
 and $\bigwedge S = \bigwedge_P S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Galois connections of rough approximations

The ordered set $(\wp(U), \subseteq)$ is a complete lattice such that

$$\bigvee \mathcal{H} = igcup \mathcal{H}$$
 and $\bigwedge \mathcal{H} = igcap \mathcal{H}$

for all $\mathcal{H} \subseteq \wp(U)$.

Proposition

For any binary relation R on U, the pairs $(\blacktriangle, \triangledown)$ and $(\vartriangle, \blacktriangledown)$ are order-preserving Galois connections on $(\wp(U), \subseteq)$.

Proof.

As noted, the maps $X \mapsto X^{\blacktriangle}$ and $X \mapsto X^{\bigtriangledown}$ are order-preserving. If $x \in X^{\heartsuit \blacktriangle}$, there exists $y \in X^{\heartsuit}$ such that $(x, y) \in R$. Because $y \in X^{\heartsuit}$ and $(y, x) \in R^{-1}$, we have $x \in X$. Hence, $X^{\heartsuit \blacktriangle} \subseteq X$. This also gives $X^{\bigtriangleup \blacktriangledown c} = X^{c \heartsuit \blacktriangle} \subseteq X^c$, i.e., $X \subseteq X^{\bigtriangleup \blacktriangledown}$.

What this then means? I

1.
$$X^{\land \lor \land} = X^{\land}, X^{\land \lor \land} = X^{\land}, X^{\lor \land \lor} = X^{\lor}, X^{\lor \land \lor} = X^{\lor}$$

- 2 a. The map $X \mapsto X^{\blacktriangle \triangledown}$ is a closure operator. The set of closed sets is $\wp(U)^{\triangledown}$, i.e. $\{X^{\blacktriangle \triangledown} \mid X \subseteq U\} = \wp(U)^{\triangledown}$.
- 2 b. The map $X \mapsto X^{\triangle \P}$ is a closure operator. The set of closed sets is $\wp(U)^{\P}$, i.e. $\{X^{\triangle \P} \mid X \subseteq U\} = \wp(U)^{\P}$.
- 3 a. The map X → X[∇] is an interior operator. The set of open sets is ℘(U)[▲], i.e. {X[∇] | X ⊆ U} = ℘(U)[▲].
- 3 b. The map $X \mapsto X^{\blacktriangledown_{\triangle}}$ is an interior operator. The set of open sets is $\wp(U)^{\vartriangle}$, i.e. $\{X^{\blacktriangledown_{\triangle}} \mid X \subseteq U\} = \wp(U)^{\vartriangle}$.

What this then means? II

4 a. For
$$\mathcal{H} \subseteq \wp(U)$$
:
 $\left(\bigcup_{X \in \mathcal{H}} X\right)^{\blacktriangle} = \bigcup_{X \in \mathcal{H}} X^{\bigstar}$ and $\left(\bigcup_{X \in \mathcal{H}} X\right)^{\bigtriangleup} = \bigcup_{X \in \mathcal{H}} X^{\bigtriangleup}$
Note that this implies that $X^{\bigstar} = \bigcup_{x \in \mathcal{X}} \{x\}^{\bigstar} = \bigcup_{x \in X} R^{-1}(x)$
and $X^{\bigtriangleup} = \bigcup_{x \in \mathcal{X}} \{x\}^{\bigtriangleup} = \bigcup_{x \in \mathcal{X}} R(x)$
4 b. $\left(\bigcap_{X \in \mathcal{H}} X\right)^{\blacktriangledown} = \bigcap_{X \in \mathcal{H}} X^{\blacktriangledown}$ and $\left(\bigcap_{X \in \mathcal{H}} X\right)^{\bigtriangledown} = \bigcap_{X \in \mathcal{H}} X^{\heartsuit}$
5. $\wp(U)^{\bigstar} \cong \wp(U)^{\heartsuit}$ and $\wp(U)^{\bigtriangleup} \cong \wp(U)^{\blacktriangledown}$

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

6 a. The ordered set $(\wp(U)^{\blacktriangle}, \subseteq)$ is a complete lattice such that

$$\bigvee_{X\in\mathcal{H}}X^{\blacktriangle}=\bigcup_{X\in\mathcal{H}}X^{\bigstar}\quad\text{and}\quad\bigwedge_{X\in\mathcal{H}}X^{\bigstar}=\Big(\bigcap_{X\in\mathcal{H}}X^{\bigstar}\Big)^{\vee\bigstar}$$

- .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

6 b. The ordered set $(\wp(U)^{\vartriangle}, \subseteq)$ is a complete lattice such that

$$\bigvee_{X\in\mathcal{H}}X^{\vartriangle}=\bigcup_{X\in\mathcal{H}}X^{\vartriangle}\quad\text{and}\quad\bigwedge_{X\in\mathcal{H}}X^{\vartriangle}=\Big(\bigcap_{X\in\mathcal{H}}X^{\vartriangle}\Big)^{\blacktriangledown\vartriangle}$$

7 a. The ordered set $(\wp(U)^{\blacktriangledown}, \subseteq)$ is a complete lattice such that

$$\bigwedge_{X\in\mathcal{H}} X^{\blacktriangledown} = \bigcap_{X\in\mathcal{H}} X^{\blacktriangledown} \quad \text{and} \quad \bigvee_{X\in\mathcal{H}} X^{\blacktriangledown} = \Big(\bigcup_{X\in\mathcal{H}} X^{\blacktriangledown}\Big)^{\vartriangle^{\lor}}$$

7 b. The ordered set $(\wp(U)^{\triangledown}, \subseteq)$ is a complete lattice such that

$$\bigwedge_{X\in\mathcal{H}}X^{\triangledown}=\bigcap_{X\in\mathcal{H}}X^{\triangledown}\quad\text{and}\quad\bigvee_{X\in\mathcal{H}}X^{\triangledown}=\Bigl(\bigcup_{X\in\mathcal{H}}X^{\bigtriangledown}\Bigr)^{\blacktriangle^{\checkmark}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Different types of relations

A binary relation R on U is said to be: left-total if for all $x \in U$, the exists $y \in U$ such that x R y. reflexive if for all $x \in U$, x R x. symmetric if x R y implies y R x. antisymmetric if x R y and y R x imply x = y. transitive if x R y and y R z imply x R z. a tolerance if it is reflexive and symmetric a quasiorder (or a preorder) if it is reflexive and transitive a partial order if it is reflexive, antisymmetric and transitive an equivalence if it is reflexive, symmetric and transitive

Example

Let *E* be an equivalence on *U* such that $\{a, b\}$ and $\{c, d\}$ are *E*-equivalence classes. We know that $X^{\blacktriangle} \cup Y^{\bigstar} = (X \cup Y)^{\bigstar}$, but $X^{\bigstar} \cap Y^{\bigstar} \supseteq (X \cap Y)^{\bigstar}$, and the inclusion can be proper! Let $X = \{a, c\}$ and $Y = \{b, d\}$. Then $X^{\bigstar} = U$ and $Y^{\bigstar} = U$, and $X^{\bigstar} \cap Y^{\bigstar} = U$, but $(X \cap Y)^{\bigstar} = \emptyset^{\bigstar} = \emptyset$. Analogously, we have $X^{\blacktriangledown} \cap Y^{\blacktriangledown} = (X \cap Y)^{\blacktriangledown}$, but $X^{\blacktriangledown} \cup Y^{\blacktriangledown} \subseteq (X \cup Y)^{\blacktriangledown}$. Also this inclusion can be proper, because $X^{\blacktriangledown} = \emptyset$, $Y^{\blacktriangledown} = \emptyset$, and $X^{\blacktriangledown} \cup Y^{\blacktriangledown} = \emptyset$. But: $(X \cup Y)^{\blacktriangledown} = U^{\blacktriangledown} = U$.

Correspondences: left-total relations

Proposition

If R is a binary relation on U, then the following are equivalent:

- (a) *R* is left-total;
- (b) $X^{\blacktriangledown} \subseteq X^{\blacktriangle}$ for all $X \subseteq U$.

Proof.

(a)
$$\Rightarrow$$
 (b): Let $x \in X^{\checkmark}$. Then $R(x) \subseteq X$, which gives $R(x) \cap X = R(x) \neq \emptyset$, i.e., $x \in X^{\blacktriangle}$.

(b) \Rightarrow (a): Assume that R is not left-total, i.e. $R(x) = \emptyset$ for some $x \in U$. This means that $x \in X^{\checkmark}$ and $x \notin X^{\blacktriangle}$ for this particular x and for any set $X \subseteq U$, a contradiction!

Correspondences: reflexive relations

Proposition

TFAE:

(a) R is reflexive;

- (b) $X \subseteq X^{\blacktriangle}$ for all $X \subseteq U$;
- (c) $X^{\checkmark} \subseteq X$ for all $X \subseteq U$.

Proof.

(a)
$$\Rightarrow$$
 (b): If $x \in X$, then $x \in R(x) \cap X \neq \emptyset$, i.e. $x \in X^{\blacktriangle}$.
(b) \Rightarrow (c): $X^c \subseteq X^{c\blacktriangle} = X^{\blacktriangledown c}$ gives $X^{\blacktriangledown} \subseteq X$.
(c) \Rightarrow (a): If R is not reflexive, there is $x \in U$ such that
 $(x, x) \notin R$. Let us consider the set $X = U \setminus \{x\}$. Now $(x, y) \in R$
implies $y \in X$. Thus, $x \in X^{\blacktriangledown}$ and $x \notin X$, a contradiction!

Correspondences: symmetric relations

Proposition

TFAE:

(a) *R* is symmetric;

(b) $(^{\blacktriangle}, ^{\blacktriangledown})$ is a Galois connection on $(\wp(U), \subseteq)$.

Proof.

(a) \Rightarrow (b): If *R* is symmetric, then $X^{\blacktriangle} = X^{\bigtriangleup}$ and $X^{\blacktriangledown} = X^{\bigtriangledown}$ for all $X \subseteq U$. Recall that $({}^{\bigstar}, {}^{\bigtriangledown})$ is a Galois connection. (b) \Rightarrow (a): If *R* is not symmetric, then for some $x, y \in U$, $(x, y) \in R$, but $(y, x) \notin R$. Let $X = \{x\}$. For all $z \in U$, $(y, z) \in R$ implies $z \notin X$. This gives $y \notin X^{\blacktriangle}$. Hence, $x \in X$ and $x \notin X^{\bigstar \blacktriangledown}$, a contradiction!

Correspondences: transitive relations

Proposition

TFAE:

- (a) R is transitive;
- (b) $X^{\blacktriangle} \subseteq X^{\blacktriangle}$ for all $X \subseteq U$;
- (c) $X^{\blacktriangledown} \subseteq X^{\blacktriangledown \blacktriangledown}$ for all $X \subseteq U$.

Proof.

(a) \Rightarrow (b): Let $x \in X^{\blacktriangle}$. There is $y \in X^{\blacktriangle}$ such that $(x, y) \in R$. Since $y \in X^{\blacktriangle}$, there is $z \in X$ such that $(y, z) \in R$. So, also $(x, z) \in R$ and $x \in X^{\blacktriangle}$. (b) \Rightarrow (c): $X^{\blacktriangledown \lor c} = X^{c \blacktriangle} \subseteq X^{c \bigstar} = X^{\blacktriangledown c}$, which gives $X^{\blacktriangledown} \subseteq X^{\blacktriangledown \blacktriangledown}$. (c) \Rightarrow (a): If R is not transitive, there are $x, y, z \in U$ such that $(x, y) \in R$ and $(y, z) \in R$, but $(x, z) \notin R$. Let $X = U \setminus \{z\}$. Then for all $w \in U$, (x, w) implies $w \in X$. Thus, $x \in X^{\blacktriangledown}$. Obviously, $y \notin X^{\blacktriangledown}$ and hence $x \notin X^{\blacktriangledown \blacktriangledown}$, a contradiction!

- Note that R is reflexive if and only if R^{-1} is reflexive,
- Similar conditions hold also for symmetry and transitivity.
- We can state similar correspondences between R and the operators X → X[△] and X → X[▽].
- However, with left-/right-total relations we have to make the following exception:

$$(\forall X \subseteq U) X^{\triangledown} \subseteq X^{\vartriangle} \iff R^{-1}$$
 is left-total
 $\iff R$ is right-total

Properties of rough approximations: tolerances

Let R be a tolerance on U and X, Y ⊆ U.
(a) X[▼] ⊆ X ⊆ X[▲]
(b) ([▲], [▼]) is an order-preserving Galois connection on (℘(U), ⊆):

$$X^{\blacktriangle} \subseteq Y \iff X \subseteq Y^{\blacktriangledown}$$

(c)
$$X^{\blacktriangle \lor \blacktriangle} = X^{\blacktriangle}$$
 and $X^{\lor \blacktriangle \lor} = X^{\lor}$.

Proposition

Let (F, G) be a Galois connection on $(\wp(U), \subseteq)$. There exists a tolerance R on U such that F equals \blacktriangle and G equals \checkmark if and only if the following conditions hold for all $x, y \in U$:

Lattice structures of approximations: tolerances

Let R be a tolerance.

(a) $(\wp(U)^{\blacktriangledown}, \subseteq)$ forms a complete lattice such that for $\mathcal{H} \subseteq \wp(U)$:

$$\bigvee_{X \in \mathcal{H}} X^{\blacktriangledown} = \big(\bigcup_{X \in \mathcal{H}} X^{\blacktriangledown}\big)^{\blacktriangle^{\bigstar}} \quad \text{and} \quad \bigwedge_{X \in \mathcal{H}} X^{\blacktriangledown} = \bigcap_{X \in \mathcal{H}} X^{\blacktriangledown}$$

(b) $(\wp(U)^{\blacktriangle}, \subseteq)$ forms a complete lattice such that for $\mathcal{H} \subseteq \wp(U)$:

$$\bigvee_{X \in \mathcal{H}} X^{\blacktriangle} = \bigcup_{X \in \mathcal{H}} X^{\bigstar} \quad \text{and} \quad \bigwedge_{X \in \mathcal{H}} X^{\bigstar} = \big(\bigcap_{X \in \mathcal{H}} X^{\bigstar}\big)^{\blacktriangledown}$$

(c) The maps X[▲] → X[▲] and X[▼] → X^{▼▲} are isomorphisms between ℘(U)[▲] and ℘(U)[▼] — these are now also self-dual

Distributivity and modularity

A lattice is **distributive** if for all x, y, z:

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

A lattice is distributive iff none of its sublattices is isomorphic to M_3 or N_5 .

A modular lattice is a lattice that satisfies the condition:

$$x \leq b$$
 implies $x \lor (a \land b) = (x \lor a) \land b$.

A lattice L is modular iff none of its sublattices is isomorphic to N_5 .

Example

 \implies The lattices $\wp(U)^{\checkmark}$ and $\wp(U)^{\blacktriangle}$ are not always distributive

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Approximation lattices as ortholattices

An **ortholattice** is a bounded lattice equipped with an orthocomplementation:

(01)
$$x \le y$$
 implies $y^{\perp} \le x^{\perp}$
(02) $x^{\perp \perp} = x$
(03) $x \lor x^{\perp} = 1$ and $x \land x^{\perp} = 0$

Lemma

Let R be a tolerance

(a)
$$\wp(U)^{\blacktriangle}$$
 is an ortholattice such that $^{\perp}: X^{\blacktriangle} \mapsto X^{\blacktriangle c}$

(b) $\wp(U)^{\checkmark}$ is an ortholattice such that $^{\top}: X^{\blacktriangledown} \mapsto X^{\blacktriangledown c^{\blacktriangledown}}$

Proposition

A complete lattice L forms an ortholattice if and only if there exists a set U and a tolerance R on U such that $L \cong \wp(U)^{\blacktriangleleft} \cong \wp(U)^{\blacktriangle}$.

Irredundant coverings

A collection \mathcal{H} of nonempty subsets of U is called a **covering** of U if $\bigcup \mathcal{H} = U$.

A covering \mathcal{H} is **irredundant** if $\mathcal{H} \setminus \{X\}$ is not a covering for any $X \in \mathcal{H}$.

Each covering \mathcal{H} of U defines a tolerance $\bigcup \{X^2 \mid X \in \mathcal{H}\}$, called the **tolerance induced** by \mathcal{H} .

Proposition

Let R be a tolerance induced by a covering $\mathcal{H} \subseteq \wp(U)$. Then, the following assertions are equivalent:

- (a) \mathcal{H} is an irredundant covering;
- (b) $\mathcal{H} \subseteq \{R(x) \mid x \in U\}$

Example

Any tolerance R on U determines an undirected graph $\mathcal{G} = (U, R)$.

The family $\mathcal{H} = \{\{a, b, d, e\}, \{b, c, d, f\}, \{d, e, f, g\}\}$ induces R. This covering \mathcal{H} is irredundant, because $R(a) = \{a, b, d, e\}$, $R(c) = \{b, c, d, f\}, R(g) = \{d, e, f, g\}.$

Definition

1. A complete lattice L satisfies the join-infinite distributive law (JID) if for any $S \subseteq L$ and $x \in L$,

$$x \wedge (\bigvee S) = \bigvee \{x \wedge y \mid y \in S\}.$$
 (JID)

2. The meet-infinite distributive law (MID) is defined:

$$x \lor (\bigwedge S) = \bigwedge \{x \lor y \mid y \in S\}.$$
 (MID)

3. A complete lattice *L* is **completely distributive** if arbitrary joins distribute over arbitrary meets

Proposition

For a tolerance R on U, the isomorphic complete lattices $\wp(U)^{\blacktriangleleft}$ and $\wp(U)^{\blacktriangle}$ are completely distributive if and only if R is induced by an irredundant covering of U.

Definition

- A bounded lattice is **complemented** if every element *a* has a complement *a*': *a* ∨ *a*' = 1 and *a* ∧ *a*' = 0.
- A complement is unique if the lattice is distributive
- **Boolean lattice**: distributive and complemented lattice
- Boolean algebra: $(B, \lor, \land, ', 0, 1)$

Remark

A distributive ortholattice is a Boolean lattice. Each Boolean lattice is trivially an ortholattice.

- A nonempty subset X of U is an R-preblock if $X^2 \subseteq R$.
- An *R*-block is a maximal *R*-preblock.
- ► The relation R is completely determined by its blocks, i.e., a R b if and only if there exists a block B such that a, b ∈ B.

Lemma

If R is a tolerance induced by an irredundant covering \mathcal{H} , then

$$\mathcal{H} = \{ R(x) \mid R(x) \text{ is a block} \}.$$

For all $x \in U$, R(x) is an *R*-block if and only if R(x) is an *R*-preblock, i.e. a **clique** of the graph $\mathcal{G} = (U, R)$.

Let L be a lattice with a least element 0. The lattice L is **atomistic**, if any element of L is the join of atoms below it. It is well known that a complete Boolean lattice is atomistic if and only if it is completely distributive.

Proposition

Let R be a tolerance induced by an irredundant covering of U. (a) $\wp(U)^{\blacktriangle}$ and $\wp(U)^{\blacktriangledown}$ are atomistic Boolean lattices (b) $At(\wp(U)^{\bigstar}) = \{R(x) \mid R(x) \text{ is a block}\}$ (c) $At(\wp(U)^{\blacktriangledown}) = \{R(x)^{\blacktriangledown} \mid R(x) \text{ is a block}\}$

Topological spaces I

A topological space (U, \mathcal{T}) consists of a set U and a family $\mathcal{T} \subseteq \wp(U)$ such that

$$(\mathrm{TS1}) \ \emptyset \in \mathcal{T} \ \mathsf{and} \ U \in \mathcal{T},$$

$$(\mathrm{TS2})\ X\cap Y\in\mathcal{T}$$
 for any sets $X,Y\in\mathcal{T}$, and

(TS3) $\bigcup \mathcal{H} \in \mathcal{T}$ for any subfamily $\mathcal{H} \subseteq \mathcal{T}$.

The family \mathcal{T} is called a **topology** on U and the members of \mathcal{T} are *open sets*. The complement of an open set is called a *closed set*

An operator $C: \wp(U) \to \wp(U)$ is a Kuratowski closure operator if for any $X, Y \subseteq U$, (K1) $X \subseteq C(X)$,

$$(K2) \quad C(C(X)) = C(X),$$

(K3)
$$C(X \cup Y) = C(X) \cup C(Y)$$
, and

(K4)
$$C(\emptyset) = \emptyset$$
.

Topological spaces II

• If \mathcal{T} is a topology on U, then the operator defined by

 $C(X) = \bigcap \{B \mid X \subseteq B \text{ and } B \text{ is closed} \}$

is a Kuratowski closure operator.

 Conversely, for a Kuratowski closure operator C on U, the family

 $\{C(X) \mid X \subseteq U\}$

determines a topological space whose closed sets are exactly these sets.

 Kuratowski closure operators are in 1-to-1 correspondence with topologies.

Heyting algebras of topologies

- A Heyting algebra L is a bounded lattice such that for all a, b ∈ L, there is a greatest element x of L with a ∧ x ≤ b.
- ► This element is the relative pseudocomplement of a with respect to b, and is denoted a → b.
- A complete lattice is a Heyting algebra if and only if it satisfies (JID). Then,

$$a \rightarrow b = \bigvee \{ c \mid a \land c \leq b \}$$

 Since T is closed under arbitrary unions and finite intersections, the complete lattice (T, ⊆) satisfies (JID): for all H ⊆ T,

$$X \cap (\bigcup \mathcal{H}) = \bigcup \{X \cap Y \mid Y \in \mathcal{H}\}.$$

Thus, every topology \mathcal{T} determines a Heyting algebra

Properties of rough approximations: quasiorders

An **Alexandrov topology** is a topology \mathcal{T} that contains also all arbitrary intersections of its members. Let \mathcal{T} be an Alexandrov topology \mathcal{T} on U. Then, for each $X \subseteq U$, there exists the **smallest neighbourhood**

$$N_{\mathcal{T}}(X) = \bigcap \{Y \in \mathcal{T} \mid X \subseteq Y\}.$$

In particular, the smallest neighbourhood of a point $x \in U$ is denoted by $N_T(x)$. The family

$$\mathcal{B}_{\mathcal{T}} = \{N_{\mathcal{T}}(x) \mid x \in U\}$$

is the **smallest base** of the Alexandrov topology \mathcal{T} . This means that every member X of \mathcal{T} can be expressed as a union of some (or none) elements of $\mathcal{B}_{\mathcal{T}}$, i.e. $X = \bigcup \{N_{\mathcal{T}}(x) \mid x \in X\}$. In addition, $\mathcal{B}_{\mathcal{T}}$ is smallest such set.

Complete lattices of Alexandrov topologies

Every Alexandrov topology T defines a complete lattice:

$$\bigvee \mathcal{H} = \bigcup \mathcal{H}$$
 and $\bigwedge \mathcal{H} = \bigcap \mathcal{H}$

for all $\mathcal{H}\subseteq \mathcal{T}$

- (\mathcal{T},\subseteq) is a distributive lattice
- In a complete lattice L, an element a is completely join-irreducible if a = ∨ S implies a ∈ S for every S ⊆ L.
- The set of completely join-irreducible elements of \mathcal{T} is $\mathcal{J} = \{N(x) \mid x \in U\}.$
- The lattice T is spatial, i.e. each element can be given as a join of join-irreducibles.

Alexandrov closure operator

We say that a closure operator is an Alexandrov closure operator if it satisfies for all H ⊆ T,

$$C(\bigcup \mathcal{H}) = \bigcup C(\mathcal{H})$$

 As in case of topologies and Kuratowski closure operators, there is 1-to-1 correspondence between Alexandrov topologies and Alexandrov closure operators.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- There is a 1-to-1 correspondence between quasiorders and Alexandrov topologies.
- ► For a quasiorder R on the set U, we can define an Alexandrov topology T_R on U consisting of all "R-closed" subsets of U with respect to the relation R:

$$\mathcal{T}_{R} = \{A \subseteq U \mid (\forall x, y \in U) \ x \in A \& x R y \Longrightarrow y \in A\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Alexandrov topologies and quasiorders

- The set R(x) is the smallest neighbourhood of the point x in the Alexandrov topology T_R
- Trivially, $y \in R(x)$ if and only if x R y.
- This hints how we may determine quasiorders by means of Alexandrov topologies
- ► If *T* is an Alexandrov topology, then the quasiorder *R_T* is defined by

$$x R_{\mathcal{T}} y \iff y \in N_{\mathcal{T}}(x).$$

• The correspondences $R \mapsto \mathcal{T}_R$ and $\mathcal{T} \mapsto R_{\mathcal{T}}$ are 1-to-1.

Alexandrov topologies and quasiorders

For a quasiorder *R*, the rough approximations satisfy for all *X* ⊆ *U*:

$$X^{\wedge \bigtriangledown} = X^{\wedge}, \ X^{\wedge \blacktriangledown} = X^{\wedge}, \ X^{\blacktriangledown \wedge} = X^{\bigtriangledown}, \ X^{\bigtriangledown \wedge} = X^{\bigtriangledown}.$$

The approximations determine two Alexandrov topologies:

$$\wp(U)^{\bigstar} = \wp(U)^{\triangledown}$$
 and $\wp(U)^{\blacktriangledown} = \wp(U)^{\vartriangle}$

- Note that ℘(U)[▼] is the same as T_R above (R-closed subsets)
- Clearly, these topologies are dual, i.e. for all $X \subseteq U$,

$$X \in \wp(U)^{\bigstar} \iff X^c \in \wp(U)^{\blacktriangledown}$$

For the Alexandrov topology $\wp(U)^{\blacktriangle} = \wp(U)^{\triangledown}$:

(i) ▲: ℘(U) → ℘(U) is the smallest neighbourhood operator.
(ii) △: ℘(U) → ℘(U) is the Alexandrov closure operator. Note that the family of closed sets for the topology ℘(U)▲ is ℘(U)♥; — and vice versa.

(iii) $^{\bigtriangledown}: \wp(U) \to \wp(U)$ is the Alexandrov interior operator, i.e., it maps each set to the greatest open set contained into the set in question.

(iv) The set $\{ \{x\}^{\blacktriangle} \mid x \in U \} = \{ R^{-1}(x) \mid x \in U \}$ is the smallest base.

Similarly, for the topology $\wp(U)^{\checkmark} = \wp(U)^{\vartriangle}$:

(i) $\triangle: \wp(U) \to \wp(U)$ is the smallest neighbourhood operator.

- (ii) $\triangleq: \wp(U) \to \wp(U)$ is the Alexandrov closure operator.
- (iii) $^{\checkmark}$: $\wp(U) \rightarrow \wp(U)$ is the Alexandrov interior operator.
- (iv) The set $\{ \{x\}^{\triangle} \mid x \in U \} = \{R(x) \mid x \in U \}$ is the smallest base.

Lattice structures of approximations: equivalences

- Equivalence *E* is a tolerance **and** a quasiorder.
- ► For an equivalence E, $X^{\blacktriangle \blacktriangledown} = X^{\blacktriangle}$ and $X^{\blacktriangledown \blacktriangle} = X^{\blacktriangledown}$.
- Therefore, ℘(U)[▼] = ℘(U)[▲] forms a completely distributive Boolean lattice — in fact, a complete field of sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The equivalence classes of *E* are the atoms.