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The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an
approximate reasoning problem.

Assume that there are

Two agents A1 and A2;

They are talking about objects from a common universe U ;
They use different languages L1 and L2;
Every formula ψ in L1 (and L2) describes a set Cψ of objects from U .
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Concept approximation problem

Each agent, who wants to understand the other, should perform
an approximation of concepts used by the other;
an approximation of reasoning scheme, e.g., derivation laws;
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Classification Problem

Given
A concept C ⊂ U used by teacher;
A sample U = U+ ∪ U−, where

U+ ⊂ C: positive examples;
U− ⊂ U \ C: negative examples;

Language L2 used by learner;

Goal
build an approximation of C in terms of L2

with simple description;
with high quality of approximation;
using efficient algorithm.

Decision table
S = (U,A ∪ {dec})
describes training data set.

a1 a2 ... dec
u1 1 0 ... 0
u2 1 1 ... 1
... ... ... ... ...
un 0 1 ... 0
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Clustering Problem

Original definition: Division of data into groups of similar objects.

In terms of approximate reasoning: Looking for approximation of a
similarity relation (i.e., a concept of being similar):

Universe: the set of pairs of objects;
Teacher: a partial knowledge about similarity + optimization criteria;
Learner: describes the similarity relation using available features;
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Association Discovery

Basket data analysis: looking for approximation of customer
behavior in terms of association rules;

Universe: the set of transactions;
Teacher: hidden behaviors of individual customers;
Learner: uses association rules to describe some common trends;

Time series data analysis:
Universe: Sub-sequences obtained by windowing with all possible frame
sizes.
Teacher: the actual phenomenon behind the collection of timed
measurements, e.g., stock market, earth movements.
Learner: trends, variations, frequent episodes, extrapolation.
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Rough set approach to Concept approximations

Lower approximation – we are sure that these objects are in the set.
Upper approximation - it is possible (likely, feasible) that these objects
belong to our set (concept). They roughly belong to the set.

AX

AX

X

U
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Generalized definition

Rough approximation of the concept C (induced by a sample X):
any pair P = (L,U) satisfying the following conditions:

1 L ⊆ U ⊆ U ;
2 L,U are subsets of U expressible in the language L2;
3 L ∩X ⊆ C ∩X ⊆ U ∩X;

4 (∗) the set L is maximal (and U is minimal) in the family of sets
definable in L satisfying (3).

Rough membership function of concept C:
any function f : U → [0, 1] such that the pair (Lf ,Uf ), where

Lf = {x ∈ U : f(x) = 1} and
Uf = {x ∈ U : f(x) > 0}.

is a rough approximation of C (induced from sample U)
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Example of Rough Set models

Standard rough sets defined by attributes:
lower and upper approximation of X by attributes from B are defined
by indiscernible classes.

Tolerance based rough sets:
Using tolerance relation (also similarity relation) instead of
indiscernibility relation.

Variable Precision Rough Sets (VPRS)
allowing some admissible level 0 ≤ β ≤ 1 of classification inaccuracy.

Generalized approximation space
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Boolean algebra in Computer Science

George Boole
(1815-1864)

George Boole was truly one of the founders
of computer science;
Boolean algebra was an attempt to use
algebraic techniques to deal with expressions
in the propositional calculus.
Boolean algebras find many applications in
electronic and computer design.
They were first applied to switching by
Claude Shannon in the 20th century.
Boolean Algebra is also a convenient
notation for representing Boolean functions.
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Algebraic approach to problem solving

Word Problem:
Madison has a pocket full of
nickels and dimes.

She has 4 more dimes
than nickels.
The total value of the
dimes and nickels is $1.15.

How many dimes and nickels
does she have?

Problem modeling:

N = number of nickels
D = number of dimes
D = N + 4

10D + 5N = 115

Solving algebraic problem:

...⇒D = 9;N = 5

Hura: 9 dimes and 5 nickels!
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Boolean Algebra:
a tuple

B = (B,+, ·, 0, 1)

satisfying following axioms:
- Commutative laws:

(a+ b) = (b+ a) and
(a · b) = (b · a)

- Distributive laws:
a · (b+ c) = (a · b) + (a · c)
a+ (b · c) = (a+ b) · (a+ c)

- Identity elements:
a+ 0 = a and a · 1 = a

- Complementary:
a+ a = 1 and a · a = 0

Binary Boolean algebra

B2 = ({0, 1},+, ·, 0, 1)

is the smallest, but the most
important, model of general
Boolean Algebra.

x y x+ y x · y
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

x ¬x
0 1
1 0

Applications:

circuit design;

propositional calculus;
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Boolean function

Any function f : {0, 1}n → {0, 1} is called a Boolean function;

An implicant of function f is a term t = x1...xmy1...yk such that

∀x1,...,xnt(x1, ..., xn) = 1⇒ f(x1, ..., xn) = 1

Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

φ1 = xyz + xyz + xyz + xyz

φ2 = (x+ y+ z)(x+ y+ z)(x+ y+ z)(x+ y+ z)

φ3 = xy + xz + yz

xyz is an implicant
xy is a prime implicant

x y z f
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1
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Boolean Reasoning Approach

Theorem (Blake Canonical Form)
A Boolean function can be represented as a disjunction of all of its prime
implicants: f = t1 + t2 + ...+ tk

Boolean Reasoning Schema
1 Modeling: Represent the problem by a collection of Boolean equations

2 Reduction: Condense the equations into a single Boolean equation

f = 0 or f = 1

3 Development: Construct the Blake Canonical form, i.e., generate the prime
implicants of f

4 Reasoning: Apply a sequence of reasoning to solve the problem

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 17 / 68



Boolean Reasoning Approach

Theorem (Blake Canonical Form)
A Boolean function can be represented as a disjunction of all of its prime
implicants: f = t1 + t2 + ...+ tk

Boolean Reasoning Schema
1 Modeling: Represent the problem by a collection of Boolean equations

2 Reduction: Condense the equations into a single Boolean equation

f = 0 or f = 1

3 Development: Construct the Blake Canonical form, i.e., generate the prime
implicants of f

4 Reasoning: Apply a sequence of reasoning to solve the problem

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 17 / 68



Boolean Reasoning – Example

Problem:
A, B, C, D are considering going to a
party. Social constrains:

If A goes than B won’t go and C
will;
If B and D go, then either A or
C (but not both) will go
If C goes and B does not, then
D will go but A will not.

Problem modeling:

A→ B ∧ C ! A(B + C) = 0

...! BD(AC +AC) = 0

...! BC(A+D) = 0

After reduction:
f = A(B + C) +BD(AC +
AC) +BC(A+D) = 0

Blake Canonical form:
f = BCD +BCD +A = 0

Facts:

BD −→ C

C −→ B +D

A −→ 0

Reasoning: (theorem proving)
e.g., show that

”C cannot go alone.”
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Boolean reasoning for decision problems

SAT: whether an equation

f(x1, ..., xn) = 1

has a solution?

SAT is the first problem which has
been proved to be NP-complete
(the Cook’s theorem).
E.g., scheduling problem may be
solved by SAT-solver.
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Boolean reasoning for optimization problems

A function φ : {0, 1}n → {0, 1} is
”monotone” if

∀x,y∈{0,1}n(x 6 y)⇒ (φ(x) 6 φ(y))

Monotone functions can be represented
by a boolean expression without
negations.
Minimal Prime Implicant Problem:

input: Monotone Boolean function f of n
variables.

output: A prime implicant of f with the
minimal length.

is NP-hard.
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Monotone functions can be represented
by a boolean expression without
negations.
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Heuristics for minimal prime implicants

Example
f = (x1 + x2 + x3)(x2 + x4)(x1 + x3 + x5)(x1 + x5)(x4 + x6)

The prime implicant can be treated as a set covering problem.

1 Greedy algorithm: In each step, select the variable that most
frequently occurs within clauses

2 Linear programming: Convert the given function into a system of
linear inequations and applying the Integer Linear Programming (ILP)
approach to this system.

3 Evolutionary algorithms:
The search space consists of all subsets of variables
the cost function for a subset X of variables is defined by (1) the
number of clauses that are uncovered by X, and (2) the size of X,
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Boolean Reasoning Approach to Rough sets

Reduct calculation;
Decision rule generation;
Real value attribute discretization;
Symbolic value grouping;
Hyperplanes and new direction creation;
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Reduction

Do we need all attributes?
Do we need to store the entire data?
Is it possible to avoid a costly test?

Reducts are subsets of attributes that preserve the same amount of
information. They are, however, (NP-)hard to find.

Efficient and robust heuristics exist for reduct construction task.
Searching for reducts may be done efficiently with the use of
evolutionary computation.
Overfitting can be avoided by considering several reducts, pruning
rules and lessening discernibility constraints.
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Data reduction in Rough sets

What is a reduct?
Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

Given an information system S = (U,A) and a monotone evaluation
function

µS : P(A) −→ <+

The set B ⊂ A is called µ-reduct, if
µ(B) = µ(A),
for any proper subset B′ ⊂ B we have µ(B′) < µ(B);

The set B ⊂ A is called approximated reduct, if
µ(B) ≥ µ(A)− ε,
for any proper subset ...
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Example

Consider the playing
tennis decision table

Let us try to predict the
decision for last two
objects

RS methodology:

Reduct calculation
Rule calculation
Matching
Voting

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play
1 |sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high FALSE| yes
4 |rainy mild high FALSE| yes
5 |rainy cool normal FALSE| yes
6 |rainy cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |sunny cool normal FALSE| yes
10|rainy mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high TRUE | yes
13|overcast hot normal FALSE| ?
14|rainy mild high TRUE | ?

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 25 / 68



Example: Decision reduct
A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play
1 |sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high FALSE| yes
4 |rainy mild high FALSE| yes
5 |rainy cool normal FALSE| yes
6 |rainy cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |sunny cool normal FALSE| yes
10|rainy mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high TRUE | yes
13|overcast hot normal FALSE| ?
14|rainy mild high TRUE | ?

Methodology
1 Discernibility matrix;
2 Discernibility Boolean function
3 Prime implicants =⇒ reducts
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Example: Decision reduct
A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play
1 |sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high FALSE| yes
4 |rainy mild high FALSE| yes
5 |rainy cool normal FALSE| yes
6 |rainy cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |sunny cool normal FALSE| yes
10|rainy mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high TRUE | yes
13|overcast hot normal FALSE| ?
14|rainy mild high TRUE | ?

Methodology
1 Discernibility matrix;
2 Discernibility Boolean function
3 Prime implicants =⇒ reducts

Discernibility matrix;
M 1 | 2 | 6 | 8
3 a1 | a1, a4 | a1, a2,

a3, a4
| a1, a2

4 a1, a2 | a1, a2,
a4

| a2, a3,
a4

| a1

5 a1, a2,
a3

| a1, a2,
a3, a4

| a4 | a1, a2,
a3

7 a1, a2,
a3, a4

| a1, a2,
a3

| a1 | a1, a2,
a3, a4

9 a2, a3 | a2, a3,
a4

| a1, a4 | a2, a3

10 a1, a2,
a3

| a1, a2,
a3, a4

| a2, a4 | a1, a3

11 a2, a3,
a4

| a2, a3 | a1, a2 | a3, a4

12 a1, a2,
a4

| a1, a2 | a1, a2,
a3

| a1, a4
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Example: Decision reduct

f =(α1)(α1 + α4)(α1 + α2)(α1 ∨ α2 + α3 + α4)

(α1 + α2 + α4)(α2 + α3 + α4)(α1 + α2 + α3)

(α4)(α2 + α3)(α2 + α4)(α1 + α3)(α3 + α4)

simplifying the function by absorbtion
law (i.e. p ∧ (p+ q) ≡ p):

f = (α1)(α4)(α2 + α3)

Transformation from CNF to DNF: f = α1α4α2 + α1α4α3

Each component corresponds to a reduct:
R1 = {a1, a2, a4} and R2 = {a1, a3, a4}
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Boolean reasoning approach

Reducts
Decision rules
Discretization
Feature selection and Feature extraction
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Example: Decision Rule Extraction

M 1 2 6 8
3 a1 a1, a4 a1, a2, a3, a4 a1, a2
4 a1, a2 a1, a2, a4 a2, a3, a4 a1
5 a1, a2, a3 a1, a2, a3, a4 a4 a1, a2, a3
7 a1, a2, a3, a4 a1, a2, a3 a1 a1, a2, a3, a4
9 a2, a3 a2, a3, a4 a1, a4 a2, a3
10 a1, a2, a3 a1, a2, a3, a4 a2, a4 a1, a3
11 a2, a3, a4 a2, a3 a1, a2 a3, a4
12 a1, a2, a4 a1, a2 a1, a2, a3 a1, a4

fu3 = (α1)(α1 ∨ α4)(α1 ∨ α2 ∨ α3 ∨ α4)(α1 ∨ α2) = α1

Decision rule:
(a1 = overcast) =⇒ dec = no
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Example: Decision Rule Extraction

M 1 2 6 8
3 a1 a1, a4 a1, a2, a3, a4 a1, a2
4 a1, a2 a1, a2, a4 a2, a3, a4 a1
5 a1, a2, a3 a1, a2, a3, a4 a4 a1, a2, a3
7 a1, a2, a3, a4 a1, a2, a3 a1 a1, a2, a3, a4
9 a2, a3 a2, a3, a4 a1, a4 a2, a3
10 a1, a2, a3 a1, a2, a3, a4 a2, a4 a1, a3
11 a2, a3, a4 a2, a3 a1, a2 a3, a4
12 a1, a2, a4 a1, a2 a1, a2, a3 a1, a4

fu8 = (α1 + α2)(α1)(α1 + α2 + α3)(α1 + α2 + α3 + α4)(α2 + α3)

(α1 + α3)(α3 + α4)(α1 + α4)

= α1(α2 + α3)(α3 ∨ α4) = α1α3 + α1α2α4

Decision rules:

(a1 = sunny) ∧ (a3 = high) =⇒ dec = no

(a1 = sunny) ∧ (a2 = mild) ∧ (a4 = FALSE) =⇒ dec = no
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Example: all conssistent decision rules

Rid Condition ⇒Decision supp. match
1 outlook(overcast)⇒ yes 4 0
2 humidity(normal) AND windy(FALSE)⇒ yes 4 0
3 outlook(sunny) AND humidity(high)⇒ no 3 1
4 outlook(rainy) AND windy(FALSE)⇒ yes 3 0
5 outlook(sunny) AND temp.(hot)⇒ no 2 1/2
6 outlook(rainy) AND windy(TRUE)⇒ no 2 1/2
7 outlook(sunny) AND humidity(normal)⇒ yes 2 1/2
8 temp.(cool) AND windy(FALSE)⇒ yes 2 0
9 temp.(mild) AND humidity(normal)⇒ yes 2 1/2
10 temp.(hot) AND windy(TRUE)⇒ no 1 1/2
11 outlook(sunny) AND temp.(mild) AND windy(FALSE)⇒ no 1 2/3
12 outlook(sunny) AND temp.(cool)⇒ yes 1 1/2
13 outlook(sunny) AND temp.(mild) AND windy(TRUE)⇒ yes 1 1
14 temp.(hot) AND humidity(normal)⇒ yes 1 0
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Discretization problem

Given a decision table S = (U,A ∪ {d}) where

U = {x1, . . . , xn}; A = {a1, ..., ak : U → <} and d : U → {1, ..., r(d)}

A a1 a2 a3 d
u1 1.0 2.0 3.0 0
u2 2.0 5.0 5.0 1
u3 3.0 7.0 1.0 2
u4 3.0 6.0 1.0 1
u5 4.0 6.0 3.0 0
u6 5.0 6.0 5.0 1
u7 6.0 1.0 8.0 2
u8 7.0 8.0 8.0 2
u9 7.0 1.0 1.0 0
u10 8.0 1.0 1.0 0

a3
-

1

u3ru4bu9bu10
2 3

bu1bu5
4 5

ru2 ru6
6 7 8

u7
u8

a2
-

1

u7bu9bu10
2

bu1
3 4 5

ru2
6

ru4bu5ru6
7

u3

8

u8

a1
-

1

bu1
2

ru2
3

u3ru4
4

bu5
5

ru6
6

u7

7

u8bu9
8

bu10? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ?
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Discretization problem

A cut (a, c) on an attribute a ∈ A discerns a pair of objects x, y ∈ U if

(a(x)− c)(a(y)− c) < 0.

A set of cuts C is consistent with S (or S–consistent, for short) if and
only if for any pair of objects x, y ∈ U such that dec(x) = dec(y), the
following condition holds:

IF x, y are discernible by S THEN x, y are discernible by C.
The consistent set of cuts C is called irreducible iff Q is not
consistent for any proper subset Q ⊂ C.
The consistent set of cuts C is called it optimal iff
card(C) ≤ card(Q) for any consistent set of cuts Q.
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Discretization problem

Theorem
Computational complexity of discretization problems

The problem DiscSize is NP–complete.
The problem OptiDisc is NP–hard.
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Boolean reasoning method for discretization

Example of a consistent set of cuts

S a b d
u1 0.8 2 1
u2 1 0.5 0
u3 1.3 3 0
u4 1.4 1 1
u5 1.4 2 0
u6 1.6 3 1
u7 1.3 1 1

C = {(a; 0.9), (a; 1.5), (b; 0.75), (b; 1.5)}
-

6

s

c
s
s
c

c

c
0.8 1 1.3 1.41.6

3

2

1

0.5

0
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The discernibility formulas ψi,j for different pairs (ui, uj) of objects:

ψ2,1 = pa1 + pb1 + pb2; ψ2,4 = pa2 + pa3 + pb1;
ψ2,6 = pa2 + pa3 + pa4 + pb1 + pb2 + pb3; ψ2,7 = pa2 + pb1;
ψ3,1 = pa1 + pa2 + pb3; ψ3,4 = pa2 + pb2 + pb3;
ψ3,6 = pa3 + pa4; ψ3,7 = pb2 + pb3;
ψ5,1 = pa1 + pa2 + pa3; ψ5,4 = pb2;
ψ5,6 = pa4 + pb3; ψ5,7 = pa3 + pb2.

The discernibility formula ΦS in CNF form is given by

ΦS =
(
pa1 + pb1 + pb2

) (
pa1 + pa2 + pb3

)
(pa1 + pa2 + pa3)

(
pa2 + pa3 + pb1

)
pb2(

pa2 + pb2 + pb3
) (
pa2 + pa3 + pa4 + pb1 + pb2 + pb3

)
(pa3 + pa4)

(
pa4 + pb3

)(
pa2 + pb1

) (
pb2 + pb3

) (
pa3 + pb2

)
.

Transforming the formula ΦS into its DNF form we obtain four prime
implicants:

ΦS = pa2p
a
4p
b
2 + pa2p

a
3p
b
2p
b
3 + pa3p

b
1p
b
2p
b
3 + pa1p

a
4p
b
1p
b
2.
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Discretization by reduct calculation

S∗ pa1 pa2 pa3 pa4 pb1 pb2 pb3 d∗

(u1, u2) 1 0 0 0 1 1 0 1
(u1, u3) 1 1 0 0 0 0 1 1
(u1, u5) 1 1 1 0 0 0 0 1
(u4, u2) 0 1 1 0 1 0 0 1
(u4, u3) 0 0 1 0 0 1 1 1
(u4, u5) 0 0 0 0 0 1 0 1
(u6, u2) 0 1 1 1 1 1 1 1
(u6, u3) 0 0 1 1 0 0 0 1
(u6, u5) 0 0 0 1 0 0 1 1
(u7, u2) 0 1 0 0 1 0 0 1
(u7, u3) 0 0 0 0 0 1 1 1
(u7, u5) 0 0 1 0 0 1 0 1
new 0 0 0 0 0 0 0 0

-

6

r
b

r
r
b

b

b
0.8 1 1.3 1.41.6

3

2

1

0.5

0
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Information systems and Decision tables

Diploma Experience French Reference Decision
x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 MSc High Yes Neutral Accept
x5 MSc Medium Yes Neutral Reject
x6 MSc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

D = (U,A ∪ {d})
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Indiscernibility Relation

For any B ⊂ A:

x IND(B) y ⇐⇒ infB(x) = infB(y)

IND(B is a equivalent relation.
[u]B = {v : u IND(B) v} – the equivalent class of IND(B).
B ⊆ A defines a partition of U :

U |B = {[u]B : u ∈ U}

For any subsets P,Q ⊆ A:

U |P = U |Q ⇐⇒ ∀u∈U [u]P = [u]Q (1)
U |P � U |Q ⇐⇒ ∀u∈U [u]P ⊆ [u]Q (2)

Properties:

P ⊆ Q =⇒ U |P � U |Q (3)
∀u∈U [u]P∪Q = [u]P ∩ [u]Q (4)
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What are reducts?
Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

Given an information system S = (U,A) and a monotone evaluation
function

µS : P(A) −→ <+

The set B ⊂ A is called µ-reduct, if
µ(B) = µ(A),
for any proper subset B′ ⊂ B we have µ(B′) < µ(B);

The set B ⊂ A is called approximated reduct, if
µ(B) ≥ µ(A)− ε,
for any proper subset ...

Definition (CORE and RED)

µ-RED = set off all µ-reducts; µ-CORE =
⋂

B∈µ-RED
B
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Positive Region Based Reducts

For any B ⊆ A and X ⊆ U :

B(X) = {u : [u]B ⊆ X}; B(X) = {u : [u]B ∩X 6= ∅}

Let S = (U,A ∪ {dec}) be a decision table, let B ⊆ A, and let
U |dec = {X1, ..., Xk}:

POSB(dec) =

k⋃
i=1

B(Xi)

If R ⊆ A satisfies
1 POSR(dec) = POSA(dec)
2 For any a ∈ R : POSR−{a}(dec) 6= POSA(dec)

then R is called the reduct of A based on positive region.
PRED(A) = set of reducts based on positive region;
This is the µ-reduct, where µ(B) = |POSB(dec)|
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Reducts

Indiscernibility relation

(x, y) ∈ IND(B) ⇐⇒ ∀a∈Aa(x) = a(y)

(x, y) ∈ INDdec(B) ⇐⇒ dec(x) = dec(y) ∨ ∀a∈Aa(x) = a(y)

A decision-relative reduct is a minimal set of attributes R ⊆ A such
that INDdec(R) = INDdec(A).
The set of all reducts is denoted by:

RED(D) = {R ⊆ A : R is a reduct of D}
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The importance of attributes

RED(D) = {R ⊆ A : R is a reduct of D}

Core attributes:
CORE(D) =

⋂
R∈RED(D)

R

An attribute a ∈ A is called reduct attribute if it occurs in at least
one of reducts

REAT (D) =
⋃

R∈RED(D)

R

The attribute is called redundant attribute if it is not a reductive
attribute.
An attribute b is redundant ⇔ b ∈ A−REAT
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The problem setting

It is obvious that for any reduct R ∈ RED(D):

CORE(D) ⊆ R ⊆ REAT (D)

The problem
For a given a decision table S = (U,A ∪ {dec}) calculate

CORE(D) =
⋂

R∈RED(D)

R and REAT (D) =
⋃

R∈RED(D)

R
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Example

a1 a2 a3 a4 Decision
x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 MSc High Yes Neutral Accept
x5 MSc Medium Yes Neutral Reject
x6 MSc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

In this example:
the set of all reducts RED(D) = {{a1, a2}, {a2, a4}}
Thus

CORE(D) = {a2} REAT (D) = {a1, a2, a4}

the redundant attribute: a3
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Discernibility matrix

a1 a2 a3 a4 Decision
x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 MSc High Yes Neutral Accept
x5 MSc Medium Yes Neutral Reject
x6 MSc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

x1 x4 x6 x7

x2 a2, a4 a1, a2 a1, a2, a4 a2, a3, a4
x3 a1, a2, a4 a1, a2, a4 a1, a2, a4 a1, a2, a3
x5 a1, a4 a2 a2, a4 a1, a2, a3, a4
x8 a1, a2, a3 a1, a2, a3, a4 a1, a2, a3 a1, a2, a4
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Boolean approach to reduct problem

Boolean discernibility function:

∆D(a1, ..., a4) = (a2 + a4)(a1 + a2)(a1 + a2 + a4)(a2 + a3 + a4)

(a1 + a2 + a4)(a1 + a2 + a4)(a1 + a2 + a4)(a1 + a2 + a3)

(a1 + a4)(a2)(a2 + a4)(a1 + a2 + a3 + a4)(a1 + a2 + a3)

(a1 + a2 + a3 + a4)(a1 + a2 + a3)(a1 + a2 + a4)

In general: R = {ai1 , ...aij} is a reduct in D⇔ the monomial

mR = ai1 · ... · aij
is a prime implicant of ∆D(a1, ..., ak)

Theorem
For any attribute a ∈ A, a is a core attribute if and only if a occurs in
discernibility matrix as a singleton. As a consequence, the problem of
searching for core attributes can be solved in polynomial time
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Simplifying the discernibility function

Absorption law:

x+ (x · y) = x x · (x+ y) = x

In our example: irreducible CNF of the discernibility function is as
follows:

∆D(a1, ..., a4) = a2 · (a1 + a4)

Complexity of searching for irreducible CNF: O(n4k) steps.
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Calculation of reductive attribute

Theorem
For any decision table D = (U,A ∪ {d}). If

∆D(a1, ..., ak) =

∑
a∈C1

a

 ·
∑
a∈C2

a

 . . .

( ∑
a∈Cm

a

)

is the irreducible CNF of discernibility function ∆D(a1, ..., ak), then

REAT (D) =

m⋃
i=1

Ci (5)

Therefore the problem of calculation of all reductive attributes can be
solved in O(n4k) steps.

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 55 / 68



Outline

1 Introduction
Rough Set Approach to Machine Learning and Data Mining
Boolean Reasoning Methodology

2 Building blocks: basic rough set methods
Decision rule extraction
Discretization

3 Different types of reducts
Core, Reductive and Redundant attributes
Complexity Results

4 Approximate Boolean Reasoning

5 Exercises

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 56 / 68



Boolean Reasoning Approach to Rough sets

Complexity of encoding functions
Given a decision table with n objects and m attributes

Problem Nr of variables Nr of clauses
minimal reduct O(m) O(n2)

decision rules O(n) functions
O(m) O(n)

discretization O(mn) O(n2)

grouping O(
∑

a∈A 2|Va|) O(n2)

hyperplanes O(nm) O(n2)

Greedy algorithm:
time complexity of searching for the best variable:

O(#variables×#clauses)
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Data Mining

The iterative and interactive process of discovering
non-trivial, implicit, previously unknown and
potentially useful (interesting) information or
patterns from large databases.

W. Frawley and G. Piatetsky-Shapiro and C.
Matheus,(1992)

The science of extracting
useful information from
large data sets or
databases.

D. Hand, H. Mannila,
P. Smyth (2001)

Rough set algorithms based on BR reasoning:
Advantages:

accuracy: high;

interpretability: high;

adjustability: high;

etc.

Disadvantages:

Complexity: high;

Scalability: low;

Usability of domain knowledge:
weak;
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Approximate Boolean Reasoning
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Example: Decision reduct
A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play
1 |sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high FALSE| yes
4 |rainy mild high FALSE| yes
5 |rainy cool normal FALSE| yes
6 |rainy cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |sunny cool normal FALSE| yes
10|rainy mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high TRUE | yes
13|overcast hot normal FALSE| ?
14|rainy mild high TRUE | ?

Methodology
1 Discernibility matrix;
2 Discernibility Boolean function
3 Prime implicants =⇒ reducts

Discernibility matrix;
M 1 2 6 8
3 a1 a1, a4 a1, a2,

a3, a4
a1, a2

4 a1, a2 a1, a2,
a4

a2, a3,
a4

a1

5 a1, a2,
a3

a1, a2,
a3, a4

a4 a1, a2,
a3

7 a1, a2,
a3, a4

a1, a2,
a3

a1 a1, a2,
a3, a4

9 a2, a3 a2, a3,
a4

a1, a4 a2, a3

10 a1, a2,
a3

a1, a2,
a3, a4

a2, a4 a1, a3

11 a2, a3,
a4

a2, a3 a1, a2 a3, a4

12 a1, a2,
a4

a1, a2 a1, a2,
a3

a1, a4

The set R is a reduct if (1) it has nonempty
intersection with each cell of the discernibility

matrix and (2) it is minimal.
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MD heuristics

First we have to calculate the number of occurrences of each
attributes in the discernibility matrix:

eval(a1) = discdec(a1) = 23 eval(a2) = discdec(a2) = 23

eval(a3) = discdec(a3) = 18 eval(a4) = discdec(a4) = 16

Thus a1 and a2 are the two most preferred attributes.
Assume that we select a1. Now we remove those cells that contain a1.
Only 9 cells remain, and the number of occurrences are:

eval(a2) = discdec(a1, a2)− discdec(a1) = 7

eval(a3) = discdec(a1, a3)− discdec(a1) = 7

eval(a4) = discdec(a1, a4)− discdec(a1) = 6

If this time we select a2, then the are only 2 remaining cells, and, both
are containing a4;
Therefore, the greedy algorithm returns the set {a1, a2, a4} as a
reduct of sufficiently small size.
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Approximate Boolean Reasoning
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MD heuristics for reducts without discernibility matrix?

A |a1 a2 a3 a4 | dec
ID|outlook temp. hum. windy |play
1 |sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high FALSE| yes
4 |rainy mild high FALSE| yes
5 |rainy cool normal FALSE| yes
6 |rainy cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |sunny cool normal FALSE| yes
10|rainy mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high TRUE | yes
13|overcast hot normal FALSE| ?
14|rainy mild high TRUE | ?

1 Number of occurences of
attibutes in M;

2 Number of occurences of a set
of attibutes in M;

Contingence table for a1:
a1 dec = no dec = yes total
sunny 3 2 5
overcast 0 3 3
rainy 1 3 4
total 4 8 12

discdec(a1) = 4 · 8− 3 · 2− 0 · 3− 1 · 3 = 23

Contingence table for {a1, a2}:
(a1, a2) no yes total
sunny, hot 2 0 2
sunny,mild 1 1 2
sunny, cool 0 1 1
overcast 0 3 3
rainy,mild 0 2 2
rainy, cool 1 1 2
total 4 8 12

discdec(a1, a2) = 4 · 8− 2 · 0− . . . = 30
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Discernibility measure for discretization

number of conflicts in a set of objects X: conflict(X) =
∑

i<j NiNj

the discernibility of a cut (a, c):

W (c) = conflict(U)− conflict(UL)− conflict(UR)

where {UL, UR} is a partition of U defined by c.
Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 64 / 68



Outline

1 Introduction
Rough Set Approach to Machine Learning and Data Mining
Boolean Reasoning Methodology

2 Building blocks: basic rough set methods
Decision rule extraction
Discretization

3 Different types of reducts
Core, Reductive and Redundant attributes
Complexity Results

4 Approximate Boolean Reasoning

5 Exercises

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 65 / 68



Exercise 1: Digital Clock Font

Each digit in Digital Clock is made of a certain number of dashes, as shown
in the image below. Each dash is displayed by a LED (light-emitting diode)

Propose a decision table to store the information about those digits and
use the rough set methods to solve the following problems:

1 Assume that we want to switch off some LEDs to save the energy, but
we still want to recognise the parity of the shown digit based on the
remaining dashes. What is the minimal set of dashes you want to
display?

2 The same question for the case we want to recognise all digits.
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Exercise 2: Core attribute

Propose an algorithm of searching for all core attributes that does not use
the discernibility matrix and has time complexity of O(k · n log n).
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Exercise 3: Decision table with maximal number of reducts

We know that the number of reducts for any decision table S with m
attributes can not exceed the upper bound

N(m) =

(
m

bm/2c

)
.

For any integer m construct a decision table with m attributes such that
the number of reducts for this table equals to N(m).
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Applications of Rough sets in
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Part II: Rough Sets and Machine Learning
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Rough set approach to ML and Data Mining

Problem in ML or DM

Decision table:

Objects?

Attribute?

Decision?

values?

Boolean function

Variables?

Clauses?

Approximation Space

Objects

Similarity

other parameters

Solution

Reduct calculation

 

 

Prime Implicant

 

 

Concept approximations
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Decision description language

Let A be a set of attributes. The description language for A is a triple

L(A) = (D, {∨,∧,¬},F)

where

D is a called the set of descriptors

D = {(a = v) : a ∈ A and v ∈ V ala}

{∨,∧,¬} is a set of standard Boolean operators

F is a set of boolean expressions defined on D called formulas.

For any B ⊆ A we denote by D|B the set of descriptors restricted to
B where D|B = {(a = v) : a ∈ B and v ∈ V ala} We also denote by
F|B the set of formulas build from D|B.
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Semantics of formulas

The semantics

Let S = (U,A) be an information table describing a sample U ⊂ X. The
semantics of any formula φ ∈ F, denoted by [[φ]]S, is defined by induction
as follows:

[[(a = v)]]S = {x ∈ U : a(x) = v} (1)

[[φ1 ∨ φ2]]S = [[φ1]]S ∪ [[φ2]]S (2)

[[φ1 ∧ φ2]]S = [[φ1]]S ∩ [[φ2]]S (3)

[[¬φ]]S = U \ [[φ]]S (4)

We associate with every formula φ the following numeric features:

length(φ) = the number of descriptors that occur in φ;

support(φ) = |[[φ]]S| = the number of objects that match the
formula;
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Decision rules

Definition of Decision Rules

Let S = {U,A ∪ {dec}} be a decision table. Any implication of a form

φ⇒ δ

where φ ∈ FA and δ ∈ Fdec, is called the decision rule in S.
The formula φ is called the premise of the decision rule r and δ is called
the consequence of r. We denote the premise and the consequence of the
decision rule r by prev(r) and cons(r), respectively.
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Decision rules ...

Generic decision rule

The decision rule r whose the premise is a boolean monomial of
descriptors, i.e.,

r ≡ (ai1 = v1) ∧ ... ∧ (aim = vm)⇒ (dec = k) (5)

is called the generic decision rule.

We will consider generic decision rules only. For a simplification, we will
talk about decision rules keeping in mind the generic ones.
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Decision rules ...

Every decision rule r of the form (5) can be characterized by the following
featured:

length(r) = the number of descriptor on the assumption of r
(i.e. the left hand side of implication)

[r] = the carrier of r, i.e. the set of objects from U
satisfying the assumption of r

support(r) = the number of objects satisfying the assumption of
r: support(r) = card([r])

confidence(r) = the confidence of r: confidence(r) = |[r]∩DECk|
|[r]|

The decision rule r is called consistent with A if

confidence(r) = 1
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Minimal rules

minimal consistent rules

For a given decision table S = (U,A ∪ {dec}), the consistent rule:

r = φ⇒ (dec = k)

is called the minimal consistent decision rule if any decision rule
φ′ ⇒ (dec = k) where φ′ is a shortening of φ is not consistent with S.
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General approach

Any rule based classification method consists of three phases :

1 Learning phase: generates a set of decision rules RULES(A) from a
given decision table A.

2 Rule selection phase: selects from RULES(A) the set of such rules
that can be supported by x. We denote this set by
MatchRules(A, x).

3 Classifying phase: makes a decision for x using some voting algorithm
for decision rules from MatchRules(A, x) with respect to the
following cases:

1 If MatchRules(A, x) is empty: the decision for x is “UNKNOWN ′′,
i.e. we have no idea how to classify x;

2 If MatchRules(A, x) consists of decision rules for the same decision
class, say kth decision class: in this case dec(x) = k;

3 If MatchRules(A, x) consists of decision rules for the different
decision classes: in this case the decision for x should be made using
some voting algorithm for decision rules from MatchRules(A, x).
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Rule filtering

Every set of rules determines a rough approximation of the given
concept via the conflict solver;

The quality of rules is estimated by training data set - a finite sample
of the whole universe;

Conflict solving = elimination of noisy and mistakes caused by
”abnormal rules”!

Not every rule, which is compatible with the training data set, is also
compatible with the universe;

It is better to eliminate abnormal rules according to the domain
knowledge;
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Filtering approach

supervised methods of filtering:

according to rule support;

according to the class coverage ratio of rules;

according to rule length;

by coverage algorithm: e.g., LEM2 method
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Rule based classifier

Decision rule generation

Rule selection

Classification

Decision table S -

New object x -

Rule set RULES(S)

MatchedRules(S, x)

?

?

?

?
-dec(x)

�� ��

�� ��

�� ��
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Standard Rough set approach to rule based classifier

Rid Condition ⇒Decision supp. match
1 outlook(overcast)⇒ yes 4 0
2 humidity(normal) AND windy(FALSE)⇒ yes 4 0
3 outlook(sunny) AND humidity(high)⇒ no -3 1
4 outlook(rainy) AND windy(FALSE)⇒ yes 3 0
5 outlook(sunny) AND temp.(hot)⇒ no -2 1/2
6 outlook(rainy) AND windy(TRUE)⇒ no -2 1/2
7 outlook(sunny) AND humidity(normal)⇒ yes 2 1/2
8 temp.(cool) AND windy(FALSE)⇒ yes 2 0
9 temp.(mild) AND humidity(normal)⇒ yes 2 1/2
10 temp.(hot) AND windy(TRUE)⇒ no -1 1/2
11 outlook(sunny) AND temp.(mild) AND windy(FALSE)⇒ no -1 2/3
12 outlook(sunny) AND temp.(cool)⇒ yes 1 1/2
13 outlook(sunny) AND temp.(mild) AND windy(TRUE)⇒ yes 1 1
14 temp.(hot) AND humidity(normal)⇒ yes 1 0

The testing object x = 〈sunny,mild, high, TRUE〉

is classified by the decision function:

Dec(x) = S

(
n∑

i=1

wi · dec(Ri) ·Match(x,Ri)

)
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Classifier

Classifier

Result of a concept approximation
method.
It is also called the classification
algorithm featured by

Input: information vector of an
object;

Output: whether an object
belong to the concept;

Parameters: are necessary for
tuning the quality of classifier;

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 17 / 64



Rough classifier

Outside look: 4 possible answers

YES (lower approximation)

POSSIBLY YES (boundary region)

NO

DON’T KNOW

Inside:

Feature selection/reduction;

Feature extraction (discretization, value
grouping, hyperplanes ...);

Decision rule extraction;

Data decomposition;

Reasoning scheme approximation;
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Decision tree

Decision tree is a classification algorithm defined by a nested
”IF–THEN–ELSE– of ”CASE-SWITCH–” command.
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Decision tree induction using Discernibility measure

MD-decision tree

use the discernibility measure to evaluate the tests,

binary decision using cuts for real value attributes and binary
partitions for symbolic value attributes.

Soft decision trees

advantages:

a form of pre-prunning technique that can prevent the overfitting
problem.
Efficient method for soft cut calculation in large data sets.

two types of soft trees:

Rough decision tree
fuzzy decision tree
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Recursive function build tree(U, dec,T):

1: if (stop condition(U, dec) = true) then
2: T.etykieta = category(U, dec);
3: return;
4: end if
5: t := choose best test(U);
6: T.test := t;
7: for v ∈ Rt do
8: Uv := {x ∈ U : t(x) = v};
9: create new trees T′;

10: T.branch(v) = T′;
11: build tree(Uv, dec,T

′)
12: end for
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X

t

0 1

XL XR

(r1, ..., rd)

(n1, ..., nd)

(l1, ..., ld)

N = n1 + ...+ nd

L = l1 + ...+ ld R = r1 + ...+ rd

Figure: The partition of the set of objects U defined by a binary test

With those notations the discernibility measure for binary tests can be also
computed as follows:

Disc(t,X) = conflict(X)− conflict(X1)− conflict(X2)

=
1

2

∑
i 6=j

ninj −
1

2

∑
i 6=j

lilj −
1

2

∑
i 6=j

rirj
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We can show that:

Disc(t,X) =
1

2

(
N2 −

d∑
i=1

n2
i

)
− 1

2

(
L2 −

d∑
i=1

l2i

)
− 1

2

(
R2 −

d∑
i=1

r2
i

)

=
1

2

(
N2 − L2 −R2

)
− 1

2

d∑
i=1

(n2
i − l2i − r2

i )

=
1

2

[
(L+R)2 − L2 −R2

]
− 1

2

d∑
i=1

[(li + ri)
2 − l2i − r2

i ]

= LR−
d∑
i=1

liri

Thus

Disc(t,X) = LR−
d∑
i=1

liri =

d∑
i=1

li

d∑
i=1

ri −
d∑
i=1

liri

=
∑
i 6=j

lirj (6)
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Discernibility measure

number of conflicts in a set of objects X: conflict(X) =
∑
i<j NiNj

the discernibility of a cut (a, c):

W (c) = conflict(U)− conflict(UL)− conflict(UR)

where {UL, UR} is a partition of U defined by c.
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Hardness of Approximation

Why the concept approximation problem is hard?

Learnability of the target concept: some concepts are too complex
and cannot be approximated directly from feature value vectors.

PAC algorithms;
Effective learnability of some concept spaces;
VC dimension, ...

Time and space complexity: Many problems related to optimal
approximation are NP-hard.
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Rough Classifier Defined by Rules
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Rough Classifier Defined by Rules

wyes =
∑

r∈Ryes

strength(r) wno =
∑

r∈Rno

strength(r)
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wyes =
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r∈Ryes

strength(r) wno =
∑

r∈Rno

strength(r)

µC(x) =


undetermined if max(wyes, wno) < ω
0 if wno − wyes ≥ θ and wno > ω
1 if wyes − wno ≥ θ and wyes > ω
θ+(wyes−wno)

2θ in other cases
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Reasoning via Layered Learning

Given:

U : the set of examples;

A: the set of attributes;

H: concept decomposition
diagram;

D = decC1 , decC2 , ...decC
Goal: For each concept C in the hierarchy:

construct a decision system SC ;
induce a rough approximation of C, i.e., a rough membership
functions for C: [µC+(x), µC−(x)]

System control: The system can be tuned by

uncertainty parameters: θ;
learning parameters for each level.
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Two-layered Approach to Concept Approximation

Typical KDD task:

Searching for patterns from data to describe a concept (sets of objects) or
a relation.

Our proposition:

Decompose the concept approximation problem into:

1 Searching for (rough) approximation of the relevant relation:

R 7−→ R̃ = (R,R)

2 inducing the approximation of the target concept using the partial
knowledge about the relation R.
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Pairwise Space

Given

Decision table

S = (U,A ∪ {dec})

δai – distance function on ai

New decision table

U × U – pairs of objects;

δai(x, y) – continue attributes;

d(x, y) =

{
0 dec(x) = dec(y)

1 otherwise
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Example of pairwise space
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Illustration of some relations in the pairwise space

〈x, y〉 ∈ τ2 (ε1, ..., εk)⇔
δai (x, y) ≤ εi for any ai ∈ A.

〈x, y〉 ∈ τ3 (w)⇔
δa1 (x, y) + ...+ wkδak (x, y) ≤ w
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Layered learning algorithm

1: for l := 0 to max level do
2: for (any concept Ck at the level l in H) do
3: if l = 0 then
4: SCk

:= (U,Ak, decCk
);

5: else
6: Ak :=

⋃
Oki ;

7: SCk
:= (U,Ak, decCk

);
8: end if
9: generate the rule set RULES(SCk

) for decision table SCk
;

10: generate the output vector Ok = {wCk
yes, w

Ck
no },

11: end for
12: end for
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Example: Nursery data set

Creator: Vladislav Rajkovic et al. (13
experts)

Donors: Marko Bohanec
(marko.bohanec@ijs.si)
Blaz Zupan (blaz.zupan@ijs.si)

Date: June, 1997

Number of Instances: 12960
(instances completely cover the
attribute space)

Number of Attributes: 8

Attributes
NURSERY not recom, recommend, very recom, priority, spec prior
. EMPLOY Employment of parents and child’s nursery
. . parents usual, pretentious, great pret
. . has nurs proper, less proper, improper, critical, very crit
. STRUCT FINAN Family structure and financial standings
. . STRUCTURE Family structure
. . . form complete, completed, incomplete, foster
. . . children 1, 2, 3, more
. . housing convenient, less conv, critical
. . finance convenient, inconv
. SOC HEALTH Social and health picture of the family
. . social non-prob, slightly prob, problematic
. . health recommended, priority, not recom
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Method:

1 Use clustering algorithm to approximate intermediate concepts;

2 Use rule based algorithm (RSES system) to approximate the target
concept;
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Method:

1 Use clustering algorithm to approximate intermediate concepts;

2 Use rule based algorithm (RSES system) to approximate the target
concept;

Results: (60% – training, 40% – testing )
original attributes only using intermediate concepts

Accuracy 83.4 99.9%

Coverage 85.3% 100%

Nr of rules 634 42 (for the target concept)
92 (for intermediate concepts)
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1 Rule-base classifiers
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Sunspots Recognition and Classification
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Sunspots Recognition and Classification
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Road Situation Simulator
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Road Situation Simulator

Universe = set of vectors s(c, t), where

c is a car;
t is a time instant;

Concept = “Dangerous situation on the road”;

Evaluation measures:
True positive rate;
Coverage rate;
Computation time;
Rule sizes;
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Ill-defined data

The proteochemometrics can be seen as the search for possible
combinations of ligand-receptor sites with optimal binding strength.

The ability of the binding affinity prediction is crucial in this task

the experimental method is very expensive both in terms of time and
monetary value.

This is the reason why data sets in this domain have small sizes.
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Differential Calculus to Function Approximation

ill-defined data: limited number of objects and large number of
attributes;

prediction of a real decision variable based on nominal attributes;

the need for the knowledge about the real mechanisms behind the
data;

No. Combination B-1 1-4 4-6 6-E PB PE Binding affinity
1 A2B2C2D2a2b2 1 1 1 1 1 1 4.52526247
2 A1B2C1D1a2b2 -1 1 -1 -1 1 1 4.818066119
3 A1B2C2D1a2b2 -1 1 1 -1 1 1 5.036009902
... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ...
39 A1B1C1D1a1b1 -1 -1 -1 -1 -1 -1 8.963821581
40 A1B1C1D1a2b1 -1 -1 -1 -1 1 -1 8.998482244
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Existing solutions:

data and sizes possible comb. dec. domain

data set A : 40 × 6 64 (0, 10)
data set B : 60 × 8 384 (0, 10)
data set C : 130 × 55 241311426 (0, 10)

Regression tree, linear regression: ?

Discretization of decision attribute: ?
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Our propositions:

2-layered learning idea and decision rule techniques.

we decompose this learning task into several subtasks:
1 Approximate the preference relation between objects;
2 Use approximate preference relation to solve other subtasks:

- learning ranking order,
- prediction of continuous decision value, or
- searching for optimal combination.

...
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Two-layer method

Input

1. A decision table
S a1 a2 ... dec
u1 1 -1 ... 4.23
u2 1 1 ... 4.31
... ... ... ... ...
un -1 1 ... 8.92

2. Domain knowledge

First level

Create comparing table

∆a1 ∆a2 ... change
u1, u2 1→ 1 −1→ 1 ... ↗
u1, u3 ... ... ... ↘
... ... ... ... ...

Learn the preference relation, i.e., decision
rules of form

∆a2 : −1→ 1 ∧ a6 = 1... =⇒ change =↘

Second level

Ranking prediction;

Decision value prediction;

Experiment design, action rules;
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Mathematical analogy

Real function analysis

Searching for maximum of a real
function f : Rk → R

1 Get some information about
its differential, e.g., gradient

∇f =

〈
df

dx1
, . . . ,

df

dxk

〉
2 Discover the properties of
f(x0) from its differential,
e.g.,
∇f(x0) is the direction
which promises maximum
increase of f

Rough differential calculus

Assume F is the right function
for target concept, i.e.,

C = F(a1, ..., ak)

Decision rules for the comparing
table indicate:
How the changes on attributes
effect on the changes of decision

Such rules are discovered
knowledge!

Meaning of rough set rules:
short, certain, possible
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Ranking

Ranking learning can be understood as a problem of reconstruction of
the correct ranking list of a set of objects;

Let S = (U,A ∪ {dec}) be a training data set and (u1, ..., un) is an
ordered sequence of objects from U according to dec, i.e.,

dec(u1) ≤ dec(u2) ≤ ... ≤ dec(un).

The problem is to reconstruct the ranking list of objects from a test
data set S′ = (V,A ∪ {dec}) without using decision attribute dec.

Our algorithm is based on the round robin tournament system which
is carried out on the set of objects U ∪ V .
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Round robin algorithm for ranking

Similarly to football leagues, every object from V – playing the
tournament – obtains a total score summarizing its played matches.

The objects from V are sorted with respect to their scores.

The scoring method use πL,U (x, y)as a referee:

Score(x) =
∑

y∈U∪V
w(y) · πL,U (x, y)

where w(y) is a weighting parameter that measures the importance of
the object y in our ranking algorithm. In our experiments:

w(y) =

{
1 if y is a test object, i.e., y ∈ V ;

1 + i
n if y = ui ∈ U.

The algorithm can be applied for all the objects from U ∪ V
to embed V into the ordered sequence (u1, u2, ..., un).
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Evaluation of ranking algorithms

There are several well known ”compatibility tests” for this problem,
e.g., Spearman R, Kendall τ , or Gamma coefficients.

If the proper ranking list of V is denoted by X = (x1, x2..., xk), then
the second ranking list is a permutation of elements of V , and
represented by Y = (xσ(1), xσ(2), ..., xσ(k))

The Spearman coefficient for a permutation
σ : {1, ..., k} → {1, ..., k} is computed by

R = 1−
6
∑k

i=1(σ(i)− i)2

k(k − 1)(k + 1)
(7)

The Spearman coefficient takes values from [−1; 1].
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Further applications

Prediction of continuous decision:

Embed the object x into the sequence (u1, u2, ..., un) by applying
ranking algorithm for objects from {x} ∪ U
Assuming that x is embedded between ui and ui+1, then

prediction(x) =
dec(ui) + dec(ui+1)

2

is returned as a result of prediction.

Experiment design:
Point out the minimal number of changes that can improve the
current combination;

Optimization by dynamic learning;
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The prediction algorithm

Let the training set of objects U = {u1, ...un} be given. The prediction
algorithm computes the decision value of the test object x /∈ U as follows:

The algorithm:

Require: The set of labeled objects U and unlabeled object x;
parameters: learning algorithm L;

Ensure: A predicted decision for x;
1: Embed the object x into the sequence (u1, u2, ..., un) by applying

ranking algorithm for objects from {x} ∪ U using L and decision table
for U ;

2: Let us assume that x is embedded between ui and ui+1;

3: Return prediction(x) = dec(ui)+dec(ui+1)
2 as a result of prediction.

The error rate on the set of testing objects V is measured by

error(V ) =
1

card(V )

∑
x∈V
|dec(x)− prediction(x)|
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Dynamic ranking

The quality of ranking algorithm can be low due to the small number
of objects.

In many applications the number of training objects is increasing in
time, but it is connected with certain cost of examination.

We can treat a ranking problem as an optimization problem:
- get the highest value element (combination)
- require as low as possible the number of examples, i.e., to minimize
the number of examinations and the cost of the whole process.
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Dynamic ranking algorithm

The dynamic ranking algorithm

Require: The set of labeled objects U and unlabeled objects V ;
parameters: learning algorithm L and positive integer request size;

Ensure: A list of objects to be requested; Ranking of elements in the U2

in the RankList;
1: U1 ← U ; U2 ← V ;
2: RankList← [ ]; //the empty list
3: while not STOP CONDITION do
4: Rank elements of U2 by using L and decision table for U1; Let this

ranking list be: (x1, x2, ...);
5: for i = 1 to request size do
6: RankList.append(xi)
7: U1 ← U1 ∪ {xi}; U2 ← U2 \ {xi};
8: end for
9: end while
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Experiments - Data sets

4 tables:

data and sizes possible comb. dec. domain

data set A : 40 × 6 64 (0, 10)
data set B : 60 × 8 384 (0, 10)
data set C : 130 × 55 241311426 (0, 10)
Artificial : 64 × 6 64 (5.7,33)

Artificial decision:

dec = ea1
a2

+(a1 +a2 +a3 +a4 +a5)∗a6/a3 +sin(a4)+ln(a5)+noise

6 learning algorithms

7-fold cross validation
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Results for real data

Learning Table A Table B Table C
algorithm acc.(%) pred.error acc.(%) pred.error acc.(%) pred.error
rough set 79.26 0.4843 81.63 0.3815 75.57 0.4328
naive bayes 72.7 0.849 74.22 0.5355 56.89 0.8925
nnge 76.75 0.5170 80.54 0.345 - -
boost nnge 80.67 0.4383 83.76 0.3779 - -
j48 75.8 0.6981 81.29 0.3821 76.2 0.4958
boost j48 80.17 0.4935 85.23 0.318 - -
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Results for artificial data

Learning Ranking Prediction Dynamic Ranking
algorithm Spearman acc.(%) Pearson pred.error pos. Spearman
Decision Rules 0.8930 83.28% 0.9653 1.4547 1.3 0.9501
Naive Bayes 0.7984 78.52% 0.5948 3.8336 1.3 0.8540
Nnge 0.7770 77.19% 0.9178 1.8245 2.5 0.9165
Boosting Nnge 0.8318 80.27% 0.9184 1.6244 1.6 0.9433
C45 0.7159 75.7% 0.8372 2.2108 2.7 0.8736
Boosting C45 0.8536 80.74% 0.9661 1.3483 1.6 0.9475
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General idea
Applications
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4 Exercises

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 61 / 64



Exercise 1: decision rules vs. decision tree

Each path of decision tree can be interpreted as a decision rule. Thus
decision tree can be treated as a set of decision rules.

1 True or false: ”Each path of a minimal decision tree is a minimal
consistent decision rule” ?

2 What are the main differences between
1 the set of decision rules in rough classifiers; and
2 the set of decision rules stored in a consistent decision tree?

3 Find the maximal possible number M(k) of minimal and consistent
decision rules for a decision table with k attributes?
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Exercise 2: Boundary cuts

Prove that if c is the best cut for an atribute then c must be one of the
boundary cut.
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Exercise 3: Are the best cuts really good?

A real number vi ∈ a(U) is called single value of an attribute a if there is exactly

one object u ∈ U such that a(u) = vi. The cut (a; c) is called the single cut if c

is lying between two single values vi and vi+1.

Prove the following properties related to single cuts:

Theorem

In case of decision tables with two decision classes, any single cut ci,
which is a local maximum of the function Disc, resolves at least half of
conflicts in the decision table, i.e.

Disc (ci) ≥
1

2
· conflict (S) .

What can you say about the depth of decision tree build by MD-heuristics?
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Applications of Rough sets in
Machine Learning and Data Mining

Part III: Rough sets and Data mining

Nguyen Hung Son

University of Warsaw, Poland
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Rough set approach to ML and Data Mining

Problem in ML or DM

Decision table:

Objects?

Attribute?

Decision?

values?

Boolean function

Variables?

Clauses?

Approximation Space

Objects

Similarity

other parameters

Solution

Reduct calculation

 

 

Prime Implicant

 

 

Concept approximations

 

 

 

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 2 / 65



Outline

1 Rough sets and association analysis
Rough sets and association rules
Scalable Rule-based Classifier

2 Soft decision tree
Soft cuts

3 Rough sets and Text mining
Clustering of Web Search Results
Extended TRSM

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 3 / 65



Outline

1 Rough sets and association analysis
Rough sets and association rules
Scalable Rule-based Classifier

2 Soft decision tree
Soft cuts

3 Rough sets and Text mining
Clustering of Web Search Results
Extended TRSM

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 4 / 65



Outline

1 Rough sets and association analysis
Rough sets and association rules
Scalable Rule-based Classifier

2 Soft decision tree
Soft cuts

3 Rough sets and Text mining
Clustering of Web Search Results
Extended TRSM

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 5 / 65



Association rule generation

Problem:
For a given information table A, an integer s, and a real number c ∈ [0, 1],
search for as much as possible association rules R such that
support(R) ≥ s and confidence(R) ≥ c;

Association rule generation methods consist of two steps:
1 Generate as much as possible frequent templates T = D1 ∧ ...Dk

2 For any template T , search for a partition T = P ∧ (T − P ) s.t.:
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Reduct approach to association rules

Surprise!: the second step can be solved by rough set methods (using
α-reducts).

Theorem
Given:

D – an information system,
T – a template,
c – minimal confidence level;

An implication P =⇒ (T −P ) is c-confident association rule if and only if
P is an α-reduct of a decision table D|T , where

α = 1− 1/c− 1

n/support(T )− 1
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D|A,B,C,D,E
t1 A C
t2 A B C D E
t3 A B C D E
t4 A B C D E
t5 B E
t6 A E
t7 E
t8 A B C D E
t9 A B C D E
t10 A B C D E
t11 A C D
t12 A D
t13 A B C D E
t14 A B
t15 A B C D E
t16 A B C D E
t17 A B C D E
t18 B C D
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D|T A B C D E dec
t1 1 0 1 0 0 0
t2 1 1 1 1 1 1
t3 1 1 1 1 1 1
t4 1 1 1 1 1 1
t5 0 1 0 0 1 0
t6 1 0 0 0 1 0
t7 0 0 0 0 1 0
t8 1 1 1 1 1 1
t9 1 1 1 1 1 1
t10 1 1 1 1 1 1
t11 1 0 1 1 0 0
t12 1 0 0 1 0 0
t13 1 1 1 1 1 1
t14 1 1 0 0 0 0
t15 1 1 1 1 1 1
t16 1 1 1 1 1 1
t17 1 1 1 1 1 1
t18 0 1 1 1 0 0
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For c = 100% we have α = 100%

100% ass. rules

C,E ⇒ A,B,D

D,E ⇒ A,B,C

A,B,C ⇒ D,E

A,B,D ⇒ C,E

A,B,E ⇒ C,D

A,C,D ⇒ B,E
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Eager vs. lazy rough classifiers
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Eager vs. lazy rough classifiers
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Apriori-based reduct calculation

A |a1 a2 a3 a4 |dec
ID|outlook temp. hum. windy |play
1 |sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high FALSE| yes
4 |rainy mild high FALSE| yes
5 |rainy cool normal FALSE| yes
6 |rainy cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |sunny cool normal FALSE| yes
10|rainy mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high TRUE | yes
13|overcast hot normal FALSE| yes
14|rainy mild high TRUE | no
x |sunny mild high TRUE | ?

⇒

A|x|d1 d2 d3 d4 |dec
ID |a1|x a2|x a3|x a4|x|dec
1 |1 0 1 0 | no
2 |1 0 1 1 | no
3 |0 0 1 0 |yes
4 |0 1 1 0 |yes
5 |0 0 0 0 |yes
6 |0 0 0 1 | no
7 |0 0 0 1 |yes
8 |1 1 1 0 | no
9 |1 0 0 0 |yes
10 |0 1 0 0 |yes
11 |1 1 0 1 |yes
12 |0 1 1 1 |yes
13 |0 0 0 0 |yes
14 |0 1 1 1 | no
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Standard (eager) method
rules supp.

outlook(overcast)⇒play(yes) 4
humidity(normal) AND windy(FALSE)⇒play(yes) 4

outlook(sunny) AND humidity(high)⇒play(no) 3
outlook(rainy) AND windy(FALSE)⇒play(yes) 3

outlook(sunny) AND temperature(hot)⇒play(no) 2
outlook(rainy) AND windy(TRUE)⇒play(no) 2

outlook(sunny) AND humidity(normal)⇒play(yes) 2
temperature(cool) AND windy(FALSE)⇒play(yes) 2

temperature(mild) AND humidity(normal)⇒play(yes) 2
temperature(hot) AND windy(TRUE)⇒play(no) 1

outlook(sunny) AND temperature(mild) AND windy(FALSE)⇒play(no) 1
outlook(sunny) AND temperature(cool)⇒play(yes) 1

outlook(sunny) AND temperature(mild) AND windy(TRUE)⇒play(yes) 1
temperature(hot) AND humidity(normal)⇒play(yes) 1

The testing object
〈sunny,mild, high, TRUE〉

is matched by two decision rules:

(outlook = sunny) AND (humidity = high) ⇒ play = no (rule nr 3)

(outlook = sunny) AND (temperature = mild) AND (windy = TRUE) ⇒ play = yes
(rule nr 13)
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Lazy algorithm on A|x

λmax = 3;σmin = 1;αmin = 1
i = 1 i = 2

C1 check R1 F1 C2 check R2 F2

{d1} (3,2) {d1} {d1, d2} (1,1) {d1, d2}
{d2} (4,2) {d2} {d1, d3} (3,0) {d1, d3}
{d3} (4,3) {d3} {d1, d4} (1,1) {d1, d4}
{d4} (3,3) {d4} {d2, d3} (2,2) {d2, d3}

{d2, d4} (1,1) {d2, d4}
{d3, d4} (2,1) {d3, d4}

i = 3
C3 check R3 F3

{d1, d2, d4} (0,1) {d1, d2, d4}

{d2, d3, d4} (1,1) {d2, d3, d4}

MatchRules(A, x) = R2 ∪R3:
(outlook = sunny) AND (humidity = high) ⇒ play = no
(outlook = sunny) AND (temperature = mild) AND (windy = TRUE) ⇒ play = yes
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FDP(Frequent Decision Pattern)-tree

The key concept, adopted from FP-growth algorithm for frequent
pattern mining;
FDP is the prefix tree for the collection of ordered list of descriptors;
Each node in FDP tree has four fields:

descriptor_name is the name of descriptor,
support is the number of training objects that contain all descriptors on
the path from the root to the current node,
class_distribution is the detail support for each decision class and
node_link are used to create list of nodes of the same descriptor
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General scheme

Construction of FDP (x). This step requires only two data scanning
passes:

First pass:
calculate the frequencies of descriptors from infA(x)
create DESC(x) – the ordered list of frequent descriptors;

Second pass:
convert each training object u into a list D(u) of frequent descriptors
from DESC(x) that occur in infA(u);
insert the list D(u) into the data structure FDP (x).

Generation of the set of frequent decision rules from FDP (x) by a
recursive procedure.
Insert the obtained rules into a data structure called the minimal rule
tree – denoted by MRT (x) – to get the set of irreducible decision
rules. This data structure can be used to perform different voting
strategy.
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Example: FDP-tree construction – I step
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Example: FDP-tree construction – II step
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Example: FDP-tree construction – II step
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Example: Rule extraction from FDP-tree

1 (outlook = sunny) ∧ (hum. = high) ⇒ play = no
2 (outlook = sunny) ∧ (temp. = mild) ∧ (windy = TRUE) ⇒ play = yes
3 (outlook = sunny) ∧ (temp. = mild) ∧ (hum. = high) ⇒ play = no
4 (outlook = sunny) ∧ (hum. = high) ∧ (windy = TRUE) ⇒ play = no

1 (outlook = sunny) ∧ (hum. = high) ⇒ play = no
2 (outlook = sunny) ∧ (temp. = mild) ∧ (windy = TRUE) ⇒ play = yes

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 18 / 65



Data sets

Data sets: Poker Hand, Covertype, Pen-Based Recognition of
Handwritten Digits
Source: UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets)
Testing objective: performance, scalability, accuracy.
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Pendigit

16 attributes, 10 decision classes, 7494 training objects, 3699 test objects;
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Poker Hand data

10 attributes, 10 decision classes, 1000000 training objects, 1000 test
objects
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Poker Hand data – height of FDP-tree
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Poker Hand data – nr of nodes
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Poker Hand data – nr of rules
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Covertype

54 attributes, 7 decision classes, 580000 training objects, 500 test objects;

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 25 / 65



Covertype – height of FDP-tree
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Covertype – nr of nodes
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Covertype – nr of rules
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Soft cuts and soft DT

A soft cut is any triple p = 〈a, l, r〉, where
a ∈ A is an attribute,
l, r ∈ < are called the left and right bounds of p ;
the value ε = r−l

2 is called the uncertain radius of p.
We say that a soft cut p discerns a pair of objects x1, x2 if a (x1) < l
and a (x2) > r.

-
l r a

The intuitive meaning of p = 〈a, l, r〉:
there is a real cut somewhere between l and r.
for any value v ∈ [l, r] we are not able to check if v is either on the
left side or on the right side of the real cut.
[l, r] is an uncertain interval of the soft cut p.
normal cut can be treated as soft cut of radius 0.
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Soft Decision Tree

The test functions can be defined by soft cuts
Here we propose two strategies using described above soft cuts:

fuzzy decision tree: any new object u can be classified as follows:
For every internal node, compute the probability that u turns left and u
turns right;
For every leave L compute the probability that u is reaching L;
The decision for u is equal to decision labeling the leaf with largest
probability.

rough decision tree: in case of uncertainty
Use both left and right subtrees to classify the new object;
Put together their answer and return the answer vector;
Vote for the best decision class.
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Searching for best cuts
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Entropy measure

entropy of an object set X: Ent(X) = −
∑d
j=1 pj log pj

the entropy of the partition induced by a cut (a, c):

E (a, c;U) =
|UL|
|U |

Ent (UL) +
|UR|
|U |

Ent (UR)

where {UL, UR} is a partition of U defined by c.
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Searching for soft cuts

STANDARD ALGORITHM FOR BEST CUT
For a given attribute a and a set of candidate cuts {c1, ..., cN}, the
best cut (a, ci) with respect to given heuristic measure

F : {c1, ..., cN} → R+

can be founded in time Ω(N).
The minimal number of simple SQL queries of form
SELECT COUNT
FROM datatable
WHERE (a BETWEEN cL AND cR) GROUPED BY d.

necessary to find out the best cut is Ω(dN)

OUR PROPOSITIONS FOR SOFT CUTS
Tail cuts can be eliminated
Divide and Conquer Technique
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Divide and Conquer Technique:
1 Divide the set of possible cuts into k intervals;
2 Select the interval that most probably contains the best cut;
3 If the considered interval is not STABLE enough then Go to Step 1
4 Return the current interval(cut) as a result.

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 36 / 65



Divide and Conquer Technique:

The number of SQL queries is O(d · k logk n) and is minimum for
k = 3;
How to define the measure evaluating the quality of the interval
[cL; cR]?
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Discernibility measure:

We construct estimation measures for intervals in four cases:

Discernibility
measure

Entropy Me-
asure

Independency as-
sumption

? ?

Dependency
assumption

? ?

Under dependency assumption, i.e.

x1
M1
' x2
M2
' ... ' xd

Md
' x1 + ...+ xd
M1 + ...+Md

=
x

M
=: t ∈ [0, 1]

discernibility measure for [cL; cR] can be estimated by:

W (cL) +W (cR) + conflict(cL; cR)

2
+

[W (cR)−W (cL)]2

conflict(cL;xR)
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Under dependency assumption, i.e. x1, ..., xd are independent random
variables with uniform distribution over sets {0, ...,M1}, ..., {0, ...,Md},
respectively.

The mean E(W (c)) for any cut c ∈ [cL; cR] satisfies

E(W (c)) =
W (cL) +W (cR) + conflict(cL; cR)

2

and for the standard deviation of W (c) we have

D2(W (c)) =

n∑
i=1

Mi(Mi + 2)

12

∑
j 6=i

(Rj − Lj)

2
One can construct the measure estimating quality of the best cut in
[cL; cR] by

Eval ([cL; cR], α) = E(W (c)) + α
√
D2(W (c))
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Example
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Experimental results

Eval ([cL; cR], α) = E(W (c)) =
W (cL) +W (cR) + conflict(cL; cR)

2

Accuracy

Data sets #objects×#attr. SLIQ ENT MD MD*
Australian 690 × 14 84.9 85.2 86.2 86.2
German 1000 × 24 - 70 69.5 70.5
Heart 270 × 13 - 77.8 79.6 79.6
Letter 20000 × 16 84.6 86.1 85.4 83.4
SatImage 6435 × 36 86.3 84.6 82.6 83.9
Shuttle 57000 × 9 99.9 99.9 99.9 98.7
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TRSM- Tolerance Rough Sets Model

Let D = {d1, d2, . . . , dN} be a set of documents and
T = {t1, t2, . . . , tM} set of index terms for D
TRSM is an approximation space R = (T, Iθ, ν, P ) determined over
the set of terms T as follows:

Tolerance classes of terms: (uncertain parameterized function by a
threshold θ)

Iθ(ti) = {tj | fD(ti, tj) ≥ θ} ∪ {ti}

where fD(ti, tj) = |{d ∈ D : d contains both ti and tj}|
Vague inclusion function: For ti ∈ T , X ⊆ T :

µ(ti, X) = ν(Iθ(ti), X) =
|Iθ(ti) ∩X|
|Iθ(ti)|

Structural function: all tolerance classes of terms are considered as
structural subsets: P (Iθ(ti)) = 1 for all ti ∈ T .

Nguyen Hung Son (University of Warsaw, Poland) RS in ML & DM Milan, 26 July 2016 43 / 65



Tolerance classes
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Example: tolerance classes

Term Tolerance classes for a query “jaguar” using 200
results (returned by Google) and θ = 9

Document
frequency

Atari Atari, Jaguar 10
Mac Mac, Jaguar, OS, X 12
onca onca, Jaguar, Panthera 9
Jaguar Atari, Mac, onca, Jaguar, club, Panthera, new,

information, OS, site, Welcome, X, Cars
185

club Jaguar, club 27
Panthera onca, Jaguar, Panthera 9
new Jaguar, new 29
information Jaguar, information 9
OS Mac,Jaguar, OS, X 15
site Jaguar, site 19
Welcome Jaguar, Welcome 21
X Mac, Jaguar, OS, X 14
Cars Jaguar, Cars 24
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In context of Information Retrieval, a tolerance class represents a
concept that is characterized by terms it contains.
By varying the threshold θ (e.g., relatively to the size of document
collection), one can control the degree of relatedness of words in
tolerance classes (or the preciseness of the concept represented by a
tolerance class).
Finally, the lower and upper approximations of any subset X ⊆ T can
be determined — with the obtained tolerance R = (T, Iθ, ν, P ) —
respectively as

LR(X) = {ti ∈ T | ν(Iθ(ti), X) = 1};

UR(X) = {ti ∈ T | ν(Iθ(ti), X) > 0}
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Enriching document representation

Let di = {ti1 , ti2 , ..., tik} be a document in D.
A “richer” representation of di can be achieved by its upper
approximation in TRSM, i.e.,

UR(di) = {ti ∈ T | ν(Iθ(ti), di) > 0}

Extended TF*IDF weighting scheme:

wnewij =


(1 + log(fdi(tj)) ∗ log N

fD(tj)
if tj ∈ di

mintk∈di wik ∗
log N

fD(tj)

1+log N
fD(tj)

if tj ∈ UR(di)\di

0 if tj /∈ UR(di)

where wij is the standard TF*IDF weight for term tj in document di.
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Title: EconPapers: Rough sets bankruptcy prediction models versus auditor
Description: Rough sets bankruptcy prediction models versus auditor signal-
ling rates. Journal of Forecasting, 2003, vol. 22, issue 8, pages 569-586.
Thomas E. McKee. ...

original vector using upper approximation
Term Weight Term Weight
auditor 0.567 auditor 0.564
bankruptcy 0.4218 bankruptcy 0.4196
signalling 0.2835 signalling 0.282
EconPapers 0.2835 EconPapers 0.282
rates 0.2835 rates 0.282
versus 0.223 versus 0.2218
issue 0.223 issue 0.2218
Journal 0.223 Journal 0.2218
MODEL 0.223 MODEL 0.2218
prediction 0.1772 prediction 0.1762
Vol 0.1709 Vol 0.1699

applications 0.0809
Computing 0.0643
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Outline

1 Rough sets and association analysis
Rough sets and association rules
Scalable Rule-based Classifier

2 Soft decision tree
Soft cuts

3 Rough sets and Text mining
Clustering of Web Search Results
Extended TRSM
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Clustering web search results

1 Searching on the web is tedious and time-consuming:
search engines can not index the huge and highly dynamic web contain,
the user’s “intention behind the search” is not clearly expressed which
results in too general, short queries;

2 Results returned by search engine can count from hundreds to
hundreds of thousands of documents.

3 Clustering of search results = grouping similar snippets together:
facilitate presentation of results in more compact form
enable thematic browsing of the results set.
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Snippet clustering problems

Poor representation of snippets can result low correlation between
documents and document clusters;
Except good quality clusters, it is also required to produce meaningful,
concise description for cluster;
The algorithm must be fast to process results on-line.
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Snippet clustering problems

Poor representation of snippets can result low correlation between
documents and document clusters;
Except good quality clusters, it is also required to produce meaningful,
concise description for cluster;
The algorithm must be fast to process results on-line.

Existing solutions:
use the domain knowledge likes thesaurus or ontology to correct the
similarity relation between snippets.

Global thesaurus, e.g., WordNet;
Local and context relationships between terms;
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Example: vivisimo screenshot
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Rough set approach to snippet clustering

1 Approximation of similarity relation on the set of terms ⇒ tolerance
rough set model (TRSM);

2 Enriching document representation using upper approximation of
snippets in TRSM;

3 Clustering the enriched representations of snippets
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Tolerance Rough set Clustering algorithm:

1 documents preprocessing: In TRC, the following standard
preprocessing steps are performed on snippets: text cleansing, text
stemming, and Stop-words elimination.

2 documents representation building: two main procedures index
term selection and term weighting are performed.

3 tolerance class generation: see next slide

4 clustering: k-mean clustering on the enriched document
representations; use nearest-neighbor to assign unclassified documents
to cluster.

5 cluster labeling: phrase labeling.
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Step 3: Tolerance class generation
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Step 4: Clustering

The set of index terms Rk representing cluster Ck is constructed so that:
each document di in Ck share some or many terms with Rk
terms in Rk occurs in most documents in Ck
terms in Rk needs not to be contained by every document in Ck

The weighting for terms tj in Rk is calculated as an averaged weight of all
occurrences in documents of Ck:

wj(Rk) =

∑
di∈Ck

wij

|{di ∈ Ck | tj ∈ di}|
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Outline

1 Rough sets and association analysis
Rough sets and association rules
Scalable Rule-based Classifier

2 Soft decision tree
Soft cuts

3 Rough sets and Text mining
Clustering of Web Search Results
Extended TRSM
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Extended TRSM using thesaurus

The extended TRSM is an approximation space RC = (T ∪ C, Iθ,α, ν, P ),
where C is the mentioned above set of concepts.

for each term ci ∈ C the set Iθ,α(ci) contains α top terms from the
bag of terms of ci calculated from the textual descriptions of concepts.
for each term ti ∈ T the set Iθ,α(ti) = Iθ(ti) ∪ Cα(ti) consists of the
tolerance class of ti from the standard TRSM and the set of concepts,
whose description contains the term ti as the one of the top α terms.

In extended TRSM, the document di ∈ D is represented by

URC
(di) = UR(di) ∪ {cj ∈ C | ν(Iθ,α(cj), di) > 0} =

⋃
tj∈di

Iθ,α(ti)
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Challenge:
How to define the weighting schema?
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Example: Explicit Semantic Analysis
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Semantic indexing of Medical documents
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Semantic indexing of Medical documents

Top 20 concepts:
“Low Back Pain", “Pain Clinics",
“Pain Perception", “Treatment Out-
come", “Sick Leave", “Outcome As-
sessment (Health Care)", “Controlled
Clinical Trials as Topic", “Controlled
Clinical Trial", “Lost to Follow-Up",
“Rehabilitation, Vocational", “Pain
Measurement", “Pain, Intractable",
“Cohort Studies", “Randomized Con-
trolled Trials as Topic", “Neck Pain",
“Sickness Impact Profile", “Chronic
Disease", “Comparative Effectiveness
Research", “Pain, Postoperative"
...
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Experiment results

Ontology: Medical Subject
Headings (MeSH)
Data Set: Pubmed Central
Expert tags: documents in
Pubmed Central are tagged
by human experts using
headings and (optionally)
accompanying subheadings
(qualifiers).
A single document is
typically tagged by 10 to 18
heading-subheading pairs.
Quality Measure: Rand Index
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