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The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an
approximate reasoning problem.

Assume that there are

@ Two agents A; and Ay;
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The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an
approximate reasoning problem.

Assume that there are

@ Two agents A; and As;

@ They are talking about objects from a common universe U;

o They use different languages £1 and Lo;

e Every formula 1) in Ly (and L2) describes a set Cy, of objects from U.

Each agent, who wants to understand the other, should perform
@ an approximation of concepts used by the other;

@ an approximation of reasoning scheme, e.g., derivation laws;
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Concept approximation problem

L1 = {keyb?ard, ok

2 2 Bl B B
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Lo = {black, brown, white,
metal, plastic, ...}

An universe of keys

Each agent, who wants to understand the other, should perform
@ an approximation of concepts used by the other;

@ an approximation of reasoning scheme, e.g., derivation laws;
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Classification Problem

Given

@ A concept C' C U used by teacher;
e Asample U = UT UU~, where

o U™ C C: positive examples;
o U~ C U\ C: negative examples;

@ Language L5 used by learner;

Decision table
S = (U, AU {dec})
describes training data set.

ar as ... | dec
Goal ug | 1 1 o1
build an approximation of C' in terms of Lo w10 1 5

@ with simple description;
@ with high quality of approximation;
@ using efficient algorithm.

Nguyen Hung Son (University of Warsaw, RS in ML & DM

Milan, 26 July 2016 6 /68



Clustering Problem

@ Original definition: Division of data into groups of similar objects.

@ In terms of approximate reasoning: Looking for approximation of a
similarity relation (i.e., a concept of being similar):
e Universe: the set of pairs of objects;
e Teacher: a partial knowledge about similarity 4+ optimization criteria;
e Learner: describes the similarity relation using available features;
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Association Discovery

o Basket data analysis: looking for approximation of customer
behavior in terms of association rules;

o Universe: the set of transactions;
o Teacher: hidden behaviors of individual customers;
o Learner: uses association rules to describe some common trends;
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Association Discovery

o Basket data analysis: looking for approximation of customer
behavior in terms of association rules;
o Universe: the set of transactions;
o Teacher: hidden behaviors of individual customers;
o Learner: uses association rules to describe some common trends;

o Time series data analysis:
e Universe: Sub-sequences obtained by windowing with all possible frame
sizes.
o Teacher: the actual phenomenon behind the collection of timed
measurements, e.g., stock market, earth movements.
o Learner: trends, variations, frequent episodes, extrapolation.
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Rough set approach to Concept approximations

@ Lower approximation — we are sure that these objects are in the set.

@ Upper approximation - it is possible (likely, feasible) that these objects
belong to our set (concept). They roughly belong to the set.

U

... . ¥
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Generalized definition

Rough approximation of the concept C' (induced by a sample X):
any pair P = (L, U) satisfying the following conditions:

Q@ LCUCU;

@ L, U are subsets of U expressible in the language Ls;

O@LNX C CNnX C UNX;

Q@ ) the set L is maximal (and U is minimal) in the family of sets
definable in £ satisfying (3).
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Generalized definition

Rough approximation of the concept C' (induced by a sample X):
any pair P = (L, U) satisfying the following conditions:

Q@ LCUCU;

@ L, U are subsets of U expressible in the language Ls;

OQOLNnX C CnX C UNJX;

O ™) the set L is maximal (and U is minimal) in the family of sets
definable in £ satisfying (3).

Rough membership function of concept C"

any function f : U — [0, 1] such that the pair (L¢, Uy), where
o Ly={zecl: f(x)=1} and
o Us={zecl: f(x)> 0}

is a rough approximation of C' (induced from sample U)
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Example of Rough Set models

e Standard rough sets defined by attributes:
o lower and upper approximation of X by attributes from B are defined
by indiscernible classes.
@ Tolerance based rough sets:

o Using tolerance relation (also similarity relation) instead of
indiscernibility relation.

Variable Precision Rough Sets (VPRS)
e allowing some admissible level 0 < 3 < 1 of classification inaccuracy.

@ Generalized approximation space
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Boolean algebra in Computer Science

George Boole
(1815-1864)

Nguyen Hung Son (University of Warsaw,

George Boole was truly one of the founders
of computer science;

Boolean algebra was an attempt to use
algebraic techniques to deal with expressions
in the propositional calculus.

Boolean algebras find many applications in
electronic and computer design.

They were first applied to switching by
Claude Shannon in the 20th century.

Boolean Algebra is also a convenient
notation for representing Boolean functions.
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Algebraic approach to problem solving

Word Problem:

Madison has a pocket full of
nickels and dimes.

@ She has 4 more dimes
than nickels.

@ The total value of the
dimes and nickels is $1.15.

How many dimes and nickels
does she have?
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Algebraic approach to problem solving

e Problem modeling:
Word Problem:

Madison has a pocket full of N = number of nickels
nickels and dimes. D = number of dimes
@ She has 4 more dimes D=N+4
than nickels. 10D + 5N = 115

@ The total value of the
dimes and nickels is $1.15.

How many dimes and nickels
does she have?
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Algebraic approach to problem solving

e Problem modeling:
Word Problem:

Madison has a pocket full of N = number of nickels
nickels and dimes. D = number of dimes
@ She has 4 more dimes D=N-+4
than nickels. 10D + 5N =115
@ The total value of the . .
dimes and nickels is $1.15. ® Solving algebraic problem:
How many dimes and nickels .=>D=9:N=5
does she have?

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 14 / 68



Algebraic approach to problem solving

e Problem modeling:

Word Problem:

Madison has a pocket full of N = number of nickels
nickels and dimes. D = number of dimes
@ She has 4 more dimes D=N-+4
than nickels. 10D + 5N =115
@ The total value of the . .
dimes and nickels is $1.15. ® Solving algebraic problem:
How many dimes and nickels .=>D=9:N=5
does she have?

@ Hura: 9 dimes and 5 nickels!
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Boolean Algebra:
a tuple BQ = ({071}7+a'a051)

is the smallest, but the most
important, model of general
Boolean Algebra.

B= (Ba+7'7071)

satisfying following axioms:
- Commutative laws:

rT|lylrxt+y|lx-y

(a+b):(b+a) and 0lo0 0 0 x| -
(a-b) = (b-a) 0o|1] 1 0 0] 1

- Distributive laws: 110 1 0 110
a-(b+c)=(a-b)+(a-c) 11| 1 1
a+(b-c)=(a+b)-(a+c)

- ldentity elements: Applications:
a+0=aanda-1=a oo .

@i @ circuit design;
at+a=1landa-a=0 ) @ propositional calculus;
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Binary Boolean algebra

Boolean Algebra:
a tuple BQ = ({071}7+a'a051)

is the smallest, but the most
important, model of general
Boolean Algebra.

B= (Ba+7'7071)

satisfying following axioms:
- Commutative laws:

rT|lylrxt+y|lx-y
(a+b) = (b+a) and o[o] o 0 i
(a-b)=(b-a) o[t 1 | o 0l 1
- Distributive laws: 110 1 0 110
a-(bt+c)=(a-b)+(a-c) 1{1] 1 1
a+(b-c)=(a+Db)-(a+c)
- ldentity elements: Applications:
a+0=aanda-1=a oo .
@i @ circuit design;
a+a=1landa-a=0 y @ propositional calculus;
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

=== O R OO O™

RO RO, O OIS
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H B E 2RO OO ON
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Boolean function
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Varant (@1, @) = 1= f(21,.00,2p) =1
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlwmyﬁﬁ‘ such that
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlwmyﬁﬁ‘ such that

Varant (@1, @) = 1= f(21,.00,2p) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
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A Boolean function can be represented by many
Boolean formulas;
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Varant (@1, @) = 1= f(21,.00,2p) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

A Boolean function can be represented by many
Boolean formulas;
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlxmyﬁm‘ such that

Varant (@1, @) = 1= f(21,.00,2p) =1
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A Boolean function can be represented by many
Boolean formulas;

@ o1 =ayz + xyz +TY2 + xY=2
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Boolean function

@ Any function ‘f :{0,1}" — {0,1} ‘ is called a Boolean function;

@ An implicant of function f is a term ’t = xlwmyﬁﬁ‘ such that

Varant (@1, @) = 1= f(21,.00,2p) =1

@ Prime implicant: an implicant that ceases to be so if any of its literal
is removed.

A Boolean function can be represented by many
Boolean formulas;

@ o1 =ayz + xyz +TY2 + xY=2
® ¢o=(r+y+2)(T+y+z)(z+y+z)(x+y+3)
@ O3 =xy+x2z+yz

@ xyZz is an implicant
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Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime
implicants:  f =1t; +to+ ... + tg
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Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime
implicants:  f =1t; +to+ ... + tg

Boolean Reasoning Schema

@ Modeling: Represent the problem by a collection of Boolean equations

© Reduction: Condense the equations into a single Boolean equation
f=0 o f=1

© Development: Construct the Blake Canonical form, i.e., generate the prime
implicants of f

© Reasoning: Apply a sequence of reasoning to solve the problem

),
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Boolean Reasoning — Example

Problem:
A, B, C, D are considering going to a
party. Social constrains:
@ If A goes than B won't go and C
will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.
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will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.

Problem modeling:

A— BAC o A(B+C) =0
.. e~ BD(AC + AC) =0
.. e~ BC(A+ D) =0

Nguyen Hung Son (University of Warsaw, RS in ML & DM

Milan, 26 July 2016

18 / 68



Boolean Reasoning — Example

Problem:
A, B, C, D are considering going to a
party. Social constrains:
@ If A goes than B won't go and C
will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.

Problem modeling:

A— BAC o A(B+C) =0
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Boolean Reasoning — Example

Problem:
A, B, C, D are considering going to a
party. Social constrains:
@ If A goes than B won't go and C
will;
o If B and D go, then either A or
C (but not both) will go

@ If C goes and B does not, then
D will go but A will not.

Problem modeling:

A— BAC o A(B+C) =0
.. e~ BD(AC + AC) =0
.. e~ BC(A+ D) =0

o After reduction:
f=A(B+C)+ BD(AC +
AC)+ BC(A+ D) =0

@ Blake Canonical form:
f=BCD+BCD+A=0

o Facts:

BD — C
C —B+D
A—0

e Reasoning: (theorem proving)
e.g., show that
"C cannot go alone.” &
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Boolean reasoning for decision problems

’ Planing (scheduling) problem P ‘

enceding @ SAT: whether an equation
\boolean function fp ‘ f@1,.an) =1
heuristics has a solution?

| SAT or MAXSAT for fp |

decoding

solution for P
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Boolean reasoning for decision problems

’ Planing (scheduling) problem P ‘

enceding @ SAT: whether an equation
\boolean function fp ‘ f@1,.an) =1
heuristics has a solution?

@ SAT is the first problem which has
been proved to be NP-complete
(the Cook's theorem).

| SAT or MAXSAT for fp |

decoding

solution for P
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Boolean reasoning for decision problems

’ Planing (scheduling) problem P ‘

enceding @ SAT: whether an equation
\boolean function fp ‘ f@1,.an) =1
heuristics has a solution?

@ SAT is the first problem which has
been proved to be NP-complete
(the Cook's theorem).

| SAT or MAXSAT for fp |

decoding e E.g., scheduling problem may be
solved by SAT-solver.

solution for P
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Boolean reasoning for optimization problems

’optimization problem I ‘

@ A function ¢ : {0,1}" — {0,1} is
encoding "monotone”’ if

Vxyefon (X < Y) = (6(x) < 9(y))
‘boolean function fp ‘

heuristics

\ prime implicants of fi; ‘

decoding

solution for 1] $
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Boolean reasoning for optimization problems

’optimization problem I ‘

@ A function ¢ : {0,1}" — {0,1} is
encoding "monotone”’ if

Vayefoyn (x < y) = (¢(x) < o(y))

‘ boolean function f ‘

@ Monotone functions can be represented
heuristics by a boolean expression without
negations.

\ prime implicants of fi; ‘

decoding

solution for 1] $
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Boolean reasoning for

’optimization problem I ‘

encoding

‘ boolean function f ‘

heuristics

\ prime implicants of fi; ‘

decoding

solution for 1]

Nguyen Hung Son (University of Warsaw,

optimization problems

e A function ¢ : {0,1}" — {0,1} is
"monotone’ if

Vye{on(X <y) = (¢(x) < 9(y))

@ Monotone functions can be represented
by a boolean expression without
negations.

@ Minimal Prime Implicant Problem:

input: Monotone Boolean function f of n
variables.
output: A prime implicant of f with the
minimal length.

is NP-hard. .
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Heuristics for minimal prime implicants

Example
f=(x1+z2+ x3)(x2 + 24) (21 + 23 + T5) (21 + x5) (4 + T6) J

The prime implicant can be treated as a set covering problem.

O Greedy algorithm: In each step, select the variable that most
frequently occurs within clauses

@ Linear programming: Convert the given function into a system of
linear inequations and applying the Integer Linear Programming (ILP)
approach to this system.

© Evolutionary algorithms:
The search space consists of all subsets of variables
the cost function for a subset X of variables is defined by (1) the
number of clauses that are uncovered by X, and (2) the size of X,
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Boolean Reasoning Approach to Rough sets

Reduct calculation;
Decision rule generation;
Real value attribute discretization;

Symbolic value grouping;

Hyperplanes and new direction creation;
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Reduction

o Do we need all attributes?
o Do we need to store the entire data?
o Is it possible to avoid a costly test?

Reducts are subsets of attributes that preserve the same amount of
information. They are, however, (NP-)hard to find.

o Efficient and robust heuristics exist for reduct construction task.

@ Searching for reducts may be done efficiently with the use of
evolutionary computation.

@ Overfitting can be avoided by considering several reducts, pruning
rules and lessening discernibility constraints.

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 23 / 68



Data reduction in Rough sets

What is a reduct?
Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

@ Given an information system S = (U, A) and a monotone evaluation
function
ps : P(A) — R
o Theset B C A is called u-reduct, if

o u(B) = u(A),
o for any proper subset B’ C B we have u(B’) < u(B);

@ The set B C A is called approximated reduct, if
o u(B) > u(4) - <,
o for any proper subset ... _
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Example

@ Consider the playing
tennis decision table

@ Let us try to predict the
decision for last two
objects

@ RS methodology:

o Reduct calculation
o Rule calculation

o Matching

o Voting

Nguyen Hung Son (University of Warsaw,

A |a1 as

as o | dec

ID|outlook temp.

hum. windy |play

1 |sunny  hot

2 |sunny  hot

3 |overcast hot

4 |rainy  mild
5 |rainy  cool
6 |rainy  cool
7 |overcast cool
8 |[sunny  mild
9 |sunny  cool
10|rainy ~ mild
11|sunny  mild
12|overcast mild

high FALSE| no
high TRUE | no
high  FALSE]| yes
high  FALSE]| yes
normal FALSE]| yes
normal TRUE | no
normal TRUE | yes
high  FALSE| no
normal FALSE| yes
normal FALSE| yes
normal TRUE | yes
high TRUE | yes

13|overcast hot
14|rainy  mild

normal FALSE| ?
high TRUE| ?

RS in ML & DM

Milan, 26 July 2016

25 / 68



Example: Decision reduct

A laq as as ay dec
ID|outlook temp. hum. windy |play
1 |[sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high  FALSE| yes
4 |rainy  mild high FALSE| yes
5 |rainy  cool normal FALSE| yes
6 |rainy  cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |[sunny mild high FALSE| no
9 |[sunny cool normal FALSE| yes
10|rainy ~ mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high  TRUE | yes

13Jovercast hot normal FALSE| 7
14|rainy ~ mild high TRUE]| ?

Methodology
@ Discernibility matrix;
@ Discernibility Boolean function .
© Prime implicants = reducts ‘$
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Example: Decision reduct
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4 |rainy  mild high FALSE| yes
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9 |[sunny cool normal FALSE| yes
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Methodology
@ Discernibility matrix;
@ Discernibility Boolean function .
© Prime implicants = reducts ‘$
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Example: Decision reduct

Alay az  ag a4 dec
ID|outlook temp. hum. windy |play
1 |[sunny hot high FALSE| no

2 |sunny hot high TRUE | no Discernibility matrix;

3 |overcast hot high  FALSE| yes M |1 |2 | 6 |8

4 |rainy  mild high FALSE| yes 3 al | a1, as | a1, az,| a1, a2

5 |rainy  cool normal FALSE| yes as, a4

6 |rainy  cool normal TRUE | no 4 . [a1, az,| az, az,|

7 |overcast cool normal TRUE | yes a4 as

8 |[sunny mild high FALSE| no 5 | a1, ag,] a1, a2,] a4 [a1, as,

9 |[sunny cool normal FALSE| yes as ,

10|rainy ~ mild normal FALSE| yes 7 az,| a1, az)| [ a1, a,

11|sunny mild normal TRUE | yes , ,

12|overcast mild high  TRUE | yes 9 | a2, as | as, a3,] a1, [,

13Jovercast hot normal FALSE| 7

14|rainy ~ mild high TRUE| ? 10 , a2, ai, as,| a2, as | a1, a3
Methodology 11| a2, as, az, as [ a1, az [ a3, a4

@ Discernibility matrix; 12 a2, a1, az | a1, az,] a1,

@ Discernibility Boolean function
© Prime implicants = reducts &
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Example: Decision reduct

M |1 |2 |6 |8 |
3 | @ |a1,as | a1, ag,| a1, az
asg, aq
4 1,02 | a1, ag,|as, ag,| @y
ay ay
5 | a1, ag,f a1, asfaq |az,
as X

7 , as,| a1, as,[ai [ai,

3, L4 4
9 | ag,az [ag, as,|ai, as |as, a
10 y Gzl a1, azlaz,as a1, a3
11 J|az,as [ay,az |ag, as
12

2, a1, a2 | a1, as,| a1, aq

Nguyen Hung Son (University of Warsaw,

f=(a1)(a1 + ag)(ar + az)(a1 Vas + as + ayq)
(o1 4+ ao 4+ ay)(ag + ag + ag) (a1 + @z + as)
(aa)(a2 + az)(az + aa) (a1 + as)(as + aa)
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Example: Decision reduct

M |1 |2 |6 |8 |
3 | @ |a1,as | a1, ag,| a1, az
asg, aq
4 1,02 | a1, ag,|as, ag,| @y
ay ay
5 | a1, ag,f a1, asfaq |az,
as s (s

7 , az,| a1, az,] as [ai,

3, g 4
9 | ag,az [ag, as,|ai, as |as, a
10 y Gzl a1, azlaz,as a1, a3
11 J|az,as [ay,az |ag, as
12

2, a1, a2 | a1, as,| a1, aq

Nguyen Hung Son (University of Warsaw,

f=(a1)(a1 + ag)(ar + az)(a1 Vas + as + ayq)
(o1 4+ ao 4+ ay)(ag + ag + ag) (a1 + @z + as)
(aa)(a2 + az)(az + aa) (a1 + as)(as + aa)

@ simplifying the function by absorbtion
law (i.e. p A (p+q) = p):

[ = (a1)(as)(az + as)
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Example: Decision reduct

M |1 |2 |6 |8 |
3 | @ |a1,as | a1, ag,| a1, az
asg, aq
4 1,02 | a1, ag,|as, ag,| @y
ay ay
5 | a1, ag,f a1, asfaq |az,
as s (s

7 , az,| a1, az,] as [ai,

» a4 4
9 | ag,az [ag, as,|ai, as |as, a
10 y Gzl a1, azlaz,as a1, a3
11 J|az,as [ay,az |ag, as
12

2, a1, a2 | a1, as,| a1, aq

Nguyen Hung Son (University of Warsaw,

f=(a1)(on +au)(on + ) Vg + oz + ay)
(o1 4+ ao 4+ ay)(ag + ag + ag) (a1 + @z + as)
(aa)(a2 + az)(az + aa) (a1 + as)(as + aa)

@ simplifying the function by absorbtion
law (i.e. p A (p+q) = p):

[ = (a1)(as)(az + as)

@ Transformation from CNF to DNF: f = ajaqas + ajagas
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Example: Decision reduct

I\341 ; :i,w ::1 a2,:jl,a2 ‘ f=(a1)(a1 + ag)(oq + ) (a1 V az + a3 + ay)
4 o w [ar, ag) w ?34 (1 + a9 + ag)(az + az + ag) (a1 + az + az)
5 [ ap, az) M, N Zi (a1, az, (cu)(a2 + a3)(ao + ay) (a1 + a3)(as + ay)
(O A e
N NP P I L . .
@ simplifying the function by absorbtion
107 o ozl | a2 as a1, az law (i.e. p A (p+q) = p):
T | ay, as.[as, a5 | a1, 02 [ a3, as
e T f= (a1)(aa)(az + as)

@ Transformation from CNF to DNF: f = ajaqas + ajagas

@ Each component corresponds to a reduct:
Ry = {a1,a2,a4} and Ry = {a1,a3,a4}
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Outline

© Building blocks: basic rough set methods
@ Decision rule extraction
@ Discretization
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Boolean reasoning approach

Reducts
Decision rules

Discretization

Feature selection and Feature extraction
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Outline

© Building blocks: basic rough set methods
@ Decision rule extraction
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Example: Decision Rule Extraction

M | 1 2 6 8 |
3 al ai,aq ai,az,as,aq ai, a2

4 ai, a2 ai,az,aa az,as, a4 a1

5 ai,az,as ai,az,as,aq a4 ai,az,as

7 ai,az,as,aq ai,az,as a ai,az,as,aq
9 as,as az,as,aq ai,aq as,as

10 ai,az,as ai,az,as,aq as, aq ai,as

11 as,as, a4 az,as ai,as as, a4

12 ai,a2,a4 ai,az ai,as,as ai,aq

fus

= (061)(041 V 064)(041 Vas VagV 064)(041 vV 042) = Q1

Decision rule:
(a1 = overcast) = dec = no

RS in ML & DM Milan, 26 July 2016 31 /68
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Example: Decision Rule Extraction
H 1 ‘ 2 6 8
3 al ai, a4 ai,az,as, a4 ai, az
4 ai, a2 a1,02,04 a2,03,04 aj
5 a1,02,03 a1, 02,03, 04 ay ai, ag, a3
7 || ai,a2,a3,a4 a1, 02,03 ai ai, as,as, a4
9 a2, a3 az,as, aq ai, a4 az, as
10 ai,as, as ai,as,as,ay as, a4 ai,as
11 a2, as, a4 as, as ai, as ag, a4
12 ai, asz, a4 ai, as ai,az,as ai, ay
fus = (a1 +a2)(aq)(a1 + as + az)(ag + as + ag + ayg)(az + az)

Decision
(] (a1

o (a1

Nguyen Hung Son (University of Warsaw,

(a1 + a3)(as + ag) (g + o)

= 041(012 + Oég)(Oég \ 044) = (1Q3 + a0y

rules:

= sunny) A (ag =

= sunny) A (ag =

high) = dec =no
mild) A (ay = FALSE) = dec = no

RS in ML & DM

Milan, 26 July 2016
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Example: all conssistent decision rules

Rid =-Decision | supp.
1 outlook(overcast)=  yes 4
2 humidity(normal) AND windy(FALSE)=-  yes 4
3 outlook(sunny) AND humidity(high)=  no 3
4 outlook(rainy) AND windy(FALSE)=-  yes 3
5 outlook(sunny) AND temp.(hot)= no 2
6 outlook(rainy) AND windy(TRUE)=  no 2
7 outlook(sunny) AND humidity(normal)= yes 2
8 temp.(cool) AND windy(FALSE)= yes 2
9 temp.(mild) AND humidity(normal)=  yes 2
10 temp.(hot) AND windy(TRUE)= no 1
11 | outlook(sunny) AND temp.(mild) AND windy(FALSE)=  no 1
12 outlook(sunny) AND temp.(cool)= yes 1
13 outlook(sunny) AND temp.(mild) AND windy(TRUE)= yes 1
14 temp.(hot) AND humidity(normal)=  yes 1

Nguyen Hung Son (University of Warsaw,

RS in ML & DM

Milan, 26 July 2016
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Outline

e Building blocks: basic rough set methods

@ Discretization
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Discretization problem

Given a decision table S = (U, AU {d}) where

U= {.’L‘l, ..
A ay a9 as d
up | 1.0 2.0 3.0 0
ug | 20 50 50 1
us | 3.0 7.0 1.0 2
ug | 3.0 6.0 1.0 1
us | 40 6.0 3.0 0
ueg | 5.0 6.0 50 1
uy | 6.0 1.0 8.0 2
ug | 7.0 8.0 8.0 2
uy | 70 1.0 10 O
up | 8.0 1.0 1.0 0

Nguyen Hung Son (University of Warsaw,

ai

az

as

Sxph A=A{a1,..,a U =R} and d: U — {1,...,r(d)}

Ous Ouz  Ousg

L XV5) oUy oUgp
ouq ‘ ou5‘ l ‘ ougl ou10
1 2 3 4 5 6 1 8
duy o Ug Ous 0Ousg
oulo L X75) oUy
oug& oul # l ou5‘ ‘
1 2 3 4 5 6 71 8
dus dusg
Uy o Ug Ou7
ou1o0 ous o U2
ow jom § o}
1 2 3 4 5 6 1 8

RS in ML & DM
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Discretization problem

@ A cut (a,c) on an attribute a € A discerns a pair of objects x,y € U if

(a(z) = ¢)(aly) — ¢) <0.

@ A set of cuts C is consistent with S (or S—consistent, for short) if and
only if for any pair of objects x,y € U such that dec(x) = dec(y), the
following condition holds:

IF x,y are discernible by S THEN x, y are discernible by C.

@ The consistent set of cuts C is called irreducible iff Q is not
consistent for any proper subset Q C C.

@ The consistent set of cuts C is called it optimal iff
card(C) < card(Q) for any consistent set of cuts Q.
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Discretization problem

OpTIDISC: optimal diseretization problem
mput: A decision table S.
output: S-optimal set of cuts.

The corresponding decision problem can be formulated as:

DiscSi1zE: k-cuts discretization problem
mput: A decision table § and an integer k.
question: Decide whether there exists a S-irreducible set of cuts P

such that card(P) < k.

Theorem

Computational complexity of discretization problems
@ The problem DiscSize is NP-complete.
@ The problem OptiDisc is NP-hard.
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Boolean reasoning method for discretization

Example of a consistent set of cuts
y

S Ta [b [d . ™17
ui |08 2 || 1 ]
us |1 |05 || 0 N N
us | 133 |l o 2 i i
uy | 1411 |1 ‘ et
us | 1.4 12 |0 1 ool
ue |16 |3 | 1 il
wy [13]1 |1 1 IR o |

C = {(a;0.9), (a; 1.5), (5;0.75), (; 1.5)} O 0.8'1 I311.6

RS in ML & DM Milan, 26 July 2016 38 / 68



The discernibility formulas 1; ; for different pairs (u;,u;) of objects:

Y1 = p§ + 1% + p; o4 = p§ + p§ + pY;
V26 = p§ + 0§+ + P8 + 5+ 05 o7 =3+ pl;

Y31 = pd + p§ + p; V34 = p3 + ph + ph;
V3.6 = p§ + p%; Y37 = ph + i

P51 = pf + P + p§; V5.4 = ph;

V5.6 = P + 3 Y57 = pg + pb.

The discernibility formula ®g in C N F form is given by

s = (p¢+p% +p8) (pF + p§ +13) 0 + P + p%) (P + p§ + %) P
Ep% + p§)+(p§) (P§)+(P% - pbfi)+ ph+ v+ 0%) (0§ + %) (9§ + p4)
ps +pi) (P2 +p3) (05 +D3) -

Transforming the formula ®g into its DN F' form we obtain four prime
implicants:

s = p3piph + papivseh + pintphph + pipsptp}. ¥
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Discretization by reduct calculation

>

0.8 1 1.314.6

d*

5

5

b
1

i

P

124

pi

0

S*

(u1,uz)

(ulv US)

(w1, us)

(U4, u2)

(ua,u3)

(U4, U5)

(ug, us)

(ug, usz)

(ug, us)

(ur,uz)

(u7,us)

(u7,us)

new
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Outline

© Different types of reducts
@ Core, Reductive and Redundant attributes
@ Complexity Results
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Information systems and Decision tables

H Diploma Experience French

Reference ‘ Decision

T
T2
T3
T4
5
L6
7
T8

Nguyen Hung Son (University of Warsaw,

MBA
MBA
MCE
MSc
MSc
MSc
MBA
MCE

Medium Yes
Low Yes
Low Yes
High Yes

Medium Yes
High Yes
High No
Low No

D= (U, Au{d})

RS in ML & DM

Excellent
Neutral
Good
Neutral
Neutral
Excellent
Good
Excellent

Milan, 26 July 2016

Accept
Reject
Reject
Accept
Reject
Accept
Accept
Reject
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Indiscernibility Relation

e Forany B C A:
r IND(B) y <= infp(z) = infp(y)

IND(B is a equivalent relation.
[ulp = {v:u IND(B) v} - the equivalent class of IND(B).
@ B C A defines a partition of U:

Up={ulp:ueU}
For any subsets P, () C A:

Ulp = Ulg <= Yucrlulp = [ulg
Ulp 2 Ulg <= Vuev[ulp C [ulq

Properties:
PCQ=Ulp=2Ulg
Vuer  [ulpug = [ulp N [ulg
RS in ML & DM Milan, 26 July 2016
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What are reducts?

Reducts are minimal subsets of attributes which contain a necessary
portion of information of the set of all attributes.

@ Given an information system S = (U, A) and a monotone evaluation

function
ps : P(A) — R
o Theset B C A is called u-reduct, if

o u(B) = u(A),
o for any proper subset B’ C B we have u(B’) < u(B);

@ The set B C A is called approximated reduct, if
o u(B) > pu(A) —¢,
e for any proper subset ...

Definition (CORE and RED)

u-RED = set off all p-reducts; u-CORE = ﬂ B
BE}L—RED

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016
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Positive Region Based Reducts

@ Forany BC Aand X CU:
BX)={u:[up € X} BX)={u:[upnX #0}
o Let S = (U, AU {dec}) be a decision table, let B C A, and let
U’dec = {Xl, ,Xk}

POSpg(dec) =

C?v

=1

o If R C A satisfies
@ POSRg(dec) = POS 4(dec)
@ Forany a € R: POSg_q,y(dec) # POS(dec)

then R is called the reduct of A based on positive region.
e PRED(A) = set of reducts based on positive region;
@ This is the p-reduct, where pu(B) = |POSg(dec)|

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016
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Reducts

o Indiscernibility relation

(z,y) € IND(B) <= Vacaa(z) = a(y)
(2,y) € INDgee(B) <= dec(x) = dec(y) V Vaeaa(r) = a(y)

@ A decision-relative reduct is a minimal set of attributes R C A such
that TN Dyeo(R) = INDgee(A).
@ The set of all reducts is denoted by:

RED(D) ={R C A: Ris a reduct of D}
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Outline

e Different types of reducts
@ Core, Reductive and Redundant attributes

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 47 / 68



The importance of attributes

RED(D) ={R C A: Ris a reduct of D}

Core attributes:

CORED)= (] R
RERED(D)

@ An attribute a € A is called reduct attribute if it occurs in at least
one of reducts

REAT®)= |J R
RERED(D)
The attribute is called redundant attribute if it is not a reductive
attribute.

An attribute b is redundant & b€ A — REAT
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The problem setting

It is obvious that for any reduct R € RED(D):

CORE(D) C R C REAT(D)

The problem
For a given a decision table S = (U, A U {dec}) calculate
CORE@)= () R and REATD)= |J R
RERED(D) RERED(D)
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Example

H al as as aq ‘ Decision
21 || MBA  Medium Yes Excellent | Accept
z9 || MBA Low Yes  Neutral Reject
x3 || MCE Low Yes Good Reject
x4 || MSc High  Yes Neutral | Accept
x5 || MSc  Medium Yes  Neutral Reject
xg || MSc High  Yes Excellent | Accept
x7 || MBA High No Good Accept
xg || MCE Low No Excellent | Reject

In this example:

o the set of all reducts RED(D) = {{a1, a2}, {az,as}}

@ Thus

CORE(D) = {a2} REAT(D) = {a1,a2,a4}

@ the redundant attribute: as

Nguyen Hung Son (University of Warsaw,

RS in ML & DM

Milan, 26 July 2016
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Outline

e Different types of reducts

@ Complexity Results
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Discernibility matrix

H al as as a4 ‘ Decision
x1 || MBA Medium Yes Excellent | Accept
x9 || MBA Low Yes  Neutral Reject
x3 || MCE Low Yes Good Reject
x4 || MSc High  Yes Neutral | Accept
x5 || MSc  Medium Yes  Neutral Reject
xg || MSc High Yes Excellent | Accept
x7 || MBA High No Good Accept
xg || MCE Low No Excellent | Reject

H T1 ‘ T4 Te xT7
x2 az, a4 ai, az ai, a2, a4 a2, a3, a4
z3 ai, az, a4 ai, az, a4 ai, a2, a4 ai, az,as
T5 ai, a4 ag az, a4 ai, az,as, a4

xs ap, az, a3 ap, az,a3, a4 ai, az,as ai, a2, a4 &
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Boolean approach to reduct problem

@ Boolean discernibility function:

Ap(ai,...,aq) = (az + aq)(a1 + a2)(a1 + az + aq) (a2 + a3 + aq)
(a1 + a2 + aq)(a1 + ag + as)(a1 + a2 + aq)(a1 + a2 + a3)
(a1 + as)(az)(az + as)(a1 + az + a3z + aq)(a1 + a2 + a3)

(a1 + a2 + ag + as)(a1 + az + az) (a1 + ag + aq)

o In general: R = {a;,,...a;;} is a reduct in D < the monomial

MR = Q4+ ... - aij

is a prime implicant of Ap(aq, ..., ax)

Theorem

For any attribute a € A, a is a core attribute if and only if a occurs in
discernibility matrix as a singleton. As a consequence, the problem of
searching for core attributes can be solved in polynomial time
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Simplifying the discernibility function

@ Absorption law:
z+(z-y) ==z z-(r+y) ==z

@ In our example: irreducible CNF of the discernibility function is as
follows:
AD(CLl, ...,CL4) = as - (a1 + a4)

o Complexity of searching for irreducible CNF: O(n*k) steps.
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Calculation of reductive attribute

Theorem
For any decision table D = (U, AU {d}). If

Ap(ay,.oap) = [ Y a]-| D a ...(Za)

aeCq a€Cy a€Cp,

is the irreducible CNF of discernibility function Ap(aq, ..., ax), then

m
REAT(D) = J & (5)
i=1
Therefore the problem of calculation of all reductive attributes can be
solved in O(n*k) steps.
W
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Outline

@ Approximate Boolean Reasoning
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Boolean Reasoning Approach to Rough sets

Complexity of encoding functions
Given a decision table with n objects and m attributes

Problem ‘ Nr of variables ‘ Nr of clauses
minimal reduct O(m) ‘ O(n?)
decision rules O(n) functions

O(m) O(n)
discretization O(mn) O(n?)
grouping O 4ecn olValy O(n?)
hyperplanes O(n™) O(n?)

Greedy algorithm:
time complexity of searching for the best variable:

O(#variables x #clauses)

v
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Data Mining

The iterative and interactive process of discovering | The science of extracting
non-trivial, implicit, previously unknown and useful information from
potentially useful (interesting) information or large data sets or
patterns from large databases. databases.
[ W. Frawley and G. Piatetsky-Shapiro and C. ¥ D. Hand, H. Mannila,
Matheus,(1992) P. Smyth (2001)

Rough set algorithms based on BR reasoning:
Advantages: Disadvantages:

@ accuracy: high; @ Complexity: high;

@ interpretability: high; @ Scalability: low;

@ adjustability: high; @ Usability of domain knowledge:

- e weak;

v

“'f"/
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Approximate Boolean Reasoning

optimization problem I1

¥

boolean function fH+ ---------- > approximate function fﬁ
prime implicants of frp <+ «%prime implicants of fﬁ
v
approximate solution for 1 *
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Example: Decision reduct

Alay a2 as a4 dec

ID|outlook temp. hum. windy |play

1 |[sunny hot high FALSE| no
2 |sunny hot high TRUE | no
3 |overcast hot high  FALSE| yes
4 |rainy  mild high FALSE| yes
5 |rainy  cool normal FALSE| yes
6 |rainy  cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |[sunny mild high FALSE| no
9 |[sunny cool normal FALSE| yes
10|rainy ~ mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high  TRUE | yes

13Jovercast hot normal FALSE| 7
14|rainy ~ mild high TRUE| ?

Methodology
@ Discernibility matrix;
@ Discernibility Boolean function
© Prime implicants = reducts

Discernibility matrix;

(M1 [ 2 | 6 [ 8 |
3 al ai, asq ai, a2, | ai, az
as, a4
4 ai, a2 ay, a2, a2, as, al
aq a4
5 ai, az, | ai, az, | a4 ai, a2,
asz as, a4 as
7 ai, az, | ai, az, | ai ai, ag,
asz, a4 as ag, a4
9 az, as az, as, ai, aq az, a3
a4
10 ai, a2, | ai, a2, | a2, aq ay, as
as ag, a4
11 az, as, az, a3 ai, az as, a4
a4
12 ai, a2, al, a2 ai, a2, ai, a4
a4 as

The set R is a reduct if (1) it has nonempty
intersection with each cell of the discernibility 434-
matrix and (2) it is minimal.
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MD heuristics

First we have to calculate the number of occurrences of each
attributes in the discernibility matrix:

eval(ay) = discgec(a1) =23 eval(az) = discgec(az) = 23
eval(az) = discgec(az) =18  eval(ay) = discgec(as) = 16
Thus a1 and as are the two most preferred attributes.
@ Assume that we select a;. Now we remove those cells that contain a;.
Only 9 cells remain, and the number of occurrences are:
eval(ag) = discgec(a1,a2) — discgec(ar) =7
eval(az) = discgec(ar, a3) — discgec(a1) =7
eval(ay) = discgec(a1,aq) — discgec(a1) = 6
@ If this time we select as, then the are only 2 remaining cells, and, both
are containing ay;

@ Therefore, the greedy algorithm returns the set {a;, a2,a4} as a *
reduct of sufficiently small size.
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Approximate Boolean Reasoning

optimization problem I1

¥

boolean function fH+ ---------- > approximate function fﬁ
prime implicants of frp <+ «%prime implicants of fﬁ
v
approximate solution for 1 *
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MD heuristics for

A |ay as as a4 dec
ID|outlook temp. hum. windy |play
1 |[sunny hot high  FALSE| no
2 |[sunny hot high TRUE | no
3 |overcast hot high  FALSE| yes
4 |rainy  mild high FALSE]|yes
5 |rainy  cool normal FALSE| yes
6 |rainy  cool normal TRUE | no
7 |overcast cool normal TRUE | yes
8 |sunny mild high FALSE| no
9 |[sunny cool normal FALSE| yes
10|rainy ~ mild normal FALSE| yes
11|sunny mild normal TRUE | yes
12|overcast mild high  TRUE | yes
13|overcast hot normal FALSE| 7

14|rainy ~ mild high TRUE| ?

@ Number of occurences of
attibutes in M

@ Number of occurences of a set
of attibutes in M

Nguyen Hung Son (University of Warsaw,

@ Contingence table for a;:

reducts without discernibility matrix?

a1 dec =no | dec = yes | total
sunny 3 2 5
overcast | 0 3 3
rainy 1 3 4
total 4 8 12

discgec(a1) =4-8—3-2-0-3—-1-3=123

@ Contingence table for {a1,a2}:

(a1,a2) no | yes | total

sunny, hot 2 0 2

sunny, mild | 1 1 2

sunny, cool | 0 1 1

overcast 0 3 3

rainy, mild | 0 2 2

rainy, cool 1 1 2

total 4 8 12
discdec(a1,a2):4-8—2-0—...:30‘

RS in ML & DM
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Discernibility measure for discretization

o : . =3 : .
o o
o =
! =3 ! o
o ;. o | .
. .
o o
. . . L]
= = o =
e (&1 ¢ e () .
11 4 ™M = 5 Il 8 ™M =
12_1 12:5 22:1 '3‘2:5
Disclc” =95 DiSCI:CQJ =41

@ number of conflicts in a set of objects X: conflict(X) =3, _; N;N;

@ the discernibility of a cut (a,c¢):

W (c) = conflict(U) — con flict(Ur) — conflict(Ur)

where {Uy,,Ug} is a partition of U defined by c.
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Outline

e Exercises
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Exercise 1: Digital Clock Font

Each digit in Digital Clock is made of a certain number of dashes, as shown
in the image below. Each dash is displayed by a LED (light-emitting diode)
L

Propose a decision table to store the information about those digits and
use the rough set methods to solve the following problems:

@ Assume that we want to switch off some LEDs to save the energy, but
we still want to recognise the parity of the shown digit based on the
remaining dashes. What is the minimal set of dashes you want to
display?

@ The same question for the case we want to recognise all digits.
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Exercise 2: Core attribute

Propose an algorithm of searching for all core attributes that does not use
the discernibility matrix and has time complexity of O(k - nlogn).
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Exercise 3: Decision table with maximal number of reducts

We know that the number of reducts for any decision table S with m
attributes can not exceed the upper bound

N = (s )

For any integer m construct a decision table with m attributes such that
the number of reducts for this table equals to N (m).
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Applications of Rough sets in
Machine Learning and Data Mining
Part IlI: Rough Sets and Machine Learning

Nguyen Hung Son
University of Warsaw, Poland

Milan, 26 July 2016
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Outline

@ Rule-base classifiers
@ Rule-based classifier

© Rough sets and decision tree
@ MD-heuristics and decision tree

© Concept Approximation with Layered learning
@ General idea
@ Applications
@ Differential Approach to Continuous Decision

@ Exercises
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Rough set approach to ML and Data Mining

Objects?

Attribute?

Decision table: Reduct calculation

values?

Decision?

Problem in ML or DM

Variables?

Boolean function Prime Implicant

Clauses?

Objects

Approximation Space Similarity Concept approximations

other parameters

¢
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Outline

@ Rule-base classifiers
@ Rule-based classifier
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Decision description language

Let A be a set of attributes. The description language for A is a triple
ﬁ(A) = (Da {\/, N, _'}> F)

where

@ D is a called the set of descriptors
D={(a=v):a€ Aandv e Val,}

e {V,A,—} is a set of standard Boolean operators
@ F is a set of boolean expressions defined on D called formulas.

e For any B C A we denote by D|p the set of descriptors restricted to
B where D|p = {(a=wv) :a € B and v € Val,} We also denote by
F|p the set of formulas build from D|p. _
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Semantics of formulas

The semantics

Let S = (U, A) be an information table describing a sample U C X. The

semantics of any formula ¢ € F, denoted by [[¢]]s, is defined by induction
as follows:

[(a = v)

lls={z €U+ a(z) = v} &)
(61 v dalls = [[galls U 42l )
61 7 dalls = [[galls N (621l (3)

lls = U\ [1glls (4)

We associate with every formula ¢ the following numeric features:
@ length(¢) = the number of descriptors that occur in ¢;
o support(¢) = |[[¢]]s| = the number of objects that match the

formula; $

Nguyen Hung Son (University of Warsaw, P RS in ML & DM Milan, 26 July 2016
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Decision rules

Definition of Decision Rules

Let S = {U, AU {dec}} be a decision table. Any implication of a form
¢=0

where ¢ € F4 and § € F,., is called the decision rule in S.

The formula ¢ is called the premise of the decision rule r and § is called
the consequence of r. We denote the premise and the consequence of the
decision rule r by prev(r) and cons(r), respectively.

Nguyen Hung Son (University of Warsaw, P RS in ML & DM Milan, 26 July 2016 7 /64



Decision rules ...

Generic decision rule

The decision rule r whose the premise is a boolean monomial of
descriptors, i.e.,

r = (a; =v1) A ... Aag, =vy) = (dec =k) (5)

is called the generic decision rule.

We will consider generic decision rules only. For a simplification, we will
talk about decision rules keeping in mind the generic ones.
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Decision rules ...

Every decision rule r of the form (5) can be characterized by the following
featured:
length(r) = the number of descriptor on the assumption of r
(i.e. the left hand side of implication)
[r] = the carrier of r, i.e. the set of objects from U
satisfying the assumption of r
support(r) = the number of objects satisfying the assumption of
r: support(r) = card([r])
con fidence(r) = the confidence of r: con fidence(r) = %
The decision rule r is called consistent with A if

confidence(r) =1
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Minimal rules

minimal consistent rules
For a given decision table S = (U, A U {dec}), the consistent rule:

r=¢ = (dec =k)

is called the minimal consistent decision rule if any decision rule
¢' = (dec = k) where ¢’ is a shortening of ¢ is not consistent with S.
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Outline

@ Rule-base classifiers
@ Rule-based classifier
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General approach

Any rule based classification method consists of three phases :

O Learning phase: generates a set of decision rules RULES(A) from a
given decision table A.

@ Rule selection phase: selects from RULES(A) the set of such rules
that can be supported by . We denote this set by
MatchRules(A, x).
© C(lassifying phase: makes a decision for z using some voting algorithm
for decision rules from MatchRules(A, x) with respect to the
following cases:
@ If MatchRules(A,x) is empty: the decision for x is “UNKNOWN",
i.e. we have no idea how to classify x;
@ If MatchRules(A,x) consists of decision rules for the same decision
class, say k' decision class: in this case dec(z) = k;
© If MatchRules(A,x) consists of decision rules for the different
decision classes: in this case the decision for x should be made using .
some voting algorithm for decision rules from MatchRules(A, x).
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Rule filtering

@ Every set of rules determines a rough approximation of the given
concept via the conflict solver;

@ The quality of rules is estimated by training data set - a finite sample
of the whole universe;

@ Conflict solving = elimination of noisy and mistakes caused by
"abnormal rules”!

@ Not every rule, which is compatible with the training data set, is also
compatible with the universe;

o It is better to eliminate abnormal rules according to the domain
knowledge;
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Filtering approach

supervised methods of filtering:

@ according to rule support;

@ according to the class coverage ratio of rules;
@ according to rule length;
°

by coverage algorithm: e.g., LEM2 method
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Rule based classifier

Decision table S—»@ecision rule generatio@

Rule set RULES(S)

New object x —»( Rule selection )

MatchedRules(S, x)

l
( Classification )—»dec(:c)
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Standard Rough set approach to rule based classifier

Rid Condition =Decision | supp. | match
1 outlook(overcast)= yes 4 0
2 humidity (normal) AND windy(FALSE)=- yes 4 0
3 outlook(sunny) AND humidity(high)= no -3 1
4 outlook(rainy) AND windy(FALSE)=- yes 3 0
5 outlook(sunny) AND temp.(hot)= no -2 1/2
6 outlook(rainy) AND windy(TRUE)=- no -2 1/2
7 outlook(sunny) AND humidity(normal)= yes 2 1/2
8 temp.(cool) AND windy(FALSE)= yes 2 0
9 temp.(mild) AND humidity(normal)=> yes 2 1/2
10 temp.(hot) AND windy(TRUE)= no -1 1/2
11 outlook(sunny) AND temp.(mild) AND windy(FALSE)= no -1 2/3
12 outlook(sunny) AND temp.(cool)= yes 1 1/2
13 outlook(sunny) AND temp.(mild) AND windy(TRUE)=- yes 1 1
14 temp.(hot) AND humidity(normal)= yes 1 0

The testing object z = (sunny, mild, high, TRUE)

is classified by the decision function:

n
Dec(z) =S <Z w; - dec(R;) - Match(z, Rl)) *
- Wg’ww i=1
NI T o




Classifier

Classifier

Result of a concept approximation
method.

It is also called the classification
algorithm featured by

@ Input: information vector of an
object;

@ Output: whether an object
belong to the concept;

e Parameters: are necessary for
tuning the quality of classifier;
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Rough classifier

Outside look: 4 possible answers

@ YES (lower approximation)

e POSSIBLY YES (boundary region)
e NO

e DON'T KNOW

Inside:

Feature selection/reduction;

Feature extraction (discretization, value
grouping, hyperplanes ...);

Decision rule extraction;

Data decomposition;

Reasoning scheme approximation;
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Outline

e Rough sets and decision tree
@ MD-heuristics and decision tree

RS in ML & DM Milan, 26 July 2016 19 / 64



Outline

e Rough sets and decision tree
@ MD-heuristics and decision tree
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|

Yes

[Income |
‘ -
.

= 166.500 = 186.500
;41."' ;L\.
| Education | | Income |
= 1.500 = 1.500 = 100.500 = 100.500
v 3
Family Education 1=
» 2.51< 2.500 » 1.500 = 1500
[ JE
Ves Ho |Income | |Fami|y |

Nguyen Hung Son (University of Warsaw, P

= 11E< 116.500

Yes Ho

= 2500 < 2.500

o 4

|'Income |

= 113< 113.500

Yes
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Decision tree

Decision tree is a classification algorithm defined by a nested
"IF-THEN-ELSE- of " CASE-SWITCH-" command. J

RS in ML & DM Milan, 26 July 2016 22 / 64



Decision tree induction using Discernibility measure

MD-decision tree
@ use the discernibility measure to evaluate the tests,

@ binary decision using cuts for real value attributes and binary
partitions for symbolic value attributes.

Soft decision trees
@ advantages:

v
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Decision tree induction using Discernibility measure

MD-decision tree
@ use the discernibility measure to evaluate the tests,

@ binary decision using cuts for real value attributes and binary
partitions for symbolic value attributes.

Soft decision trees
@ advantages:

e a form of pre-prunning technique that can prevent the overfitting
problem.
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Decision tree induction using Discernibility measure

MD-decision tree
@ use the discernibility measure to evaluate the tests,

@ binary decision using cuts for real value attributes and binary
partitions for symbolic value attributes.

Soft decision trees
@ advantages:

e a form of pre-prunning technique that can prevent the overfitting
problem.
o Efficient method for soft cut calculation in large data sets.
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Decision tree induction using Discernibility measure

MD-decision tree
@ use the discernibility measure to evaluate the tests,

@ binary decision using cuts for real value attributes and binary
partitions for symbolic value attributes.

Soft decision trees
@ advantages:

e a form of pre-prunning technique that can prevent the overfitting
problem.
o Efficient method for soft cut calculation in large data sets.

@ two types of soft trees:
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Decision tree induction using Discernibility measure

MD-decision tree
@ use the discernibility measure to evaluate the tests,

@ binary decision using cuts for real value attributes and binary
partitions for symbolic value attributes.

Soft decision trees
@ advantages:

e a form of pre-prunning technique that can prevent the overfitting
problem.
o Efficient method for soft cut calculation in large data sets.

@ two types of soft trees:
e Rough decision tree
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Decision tree induction using Discernibility measure

MD-decision tree
@ use the discernibility measure to evaluate the tests,

@ binary decision using cuts for real value attributes and binary
partitions for symbolic value attributes.

Soft decision trees
@ advantages:
e a form of pre-prunning technique that can prevent the overfitting
problem.
o Efficient method for soft cut calculation in large data sets.
@ two types of soft trees:

e Rough decision tree
e fuzzy decision tree
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Recursive function build_tree(U, dec, T):

10:
11:
12:

. if (stop_condition(U,dec) = true) then

T .etykieta = category(U, dec);
return,;

1
2
3
4: end if
5:
6
7
8
9

t := choose_best _test(U);

: T.test :=t;
: for v € R; do

Uy :={zeU:tx)=n1v};

create new trees T;

T.branch(v) = T';

build_tree(U,,dec, T")
end for

Nguyen Hung Son (University of Warsaw, P RS in ML & DM
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(I, la) (r1y ey Tq)
L=0L+..4+1 R=ri+..+1rg4

Figure: The partition of the set of objects U defined by a binary test

With those notations the discernibility measure for binary tests can be also
computed as follows:

Disc(t, X) = conflict(X) — conflict(X1) — con flict(X2)

= %anj —%Zlilj—%zm’r'j

i) i i ¥
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We can show that:

Disc(t,X) = <N2 Zn)—( _Zd:lg>_

=1

N =

(3

1 1
:§(N27L271~22)752(7134377«2)

[\D\H

d

=LR— Z lﬂ‘i
=1

Thus
d
Disc(t,X)=LR — Z Lir; = Zl Zrl
=1 i=1 =1
= Z lﬂ’j
i#]
RS in ML & DM

1
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Discernibility measure

o : - o : L]
o o
o o
o o
o . o .
- -
o o
. . . .
o o [} o
e (&1 ¢ e o .
fl 4 ™ = 5 fl 8 =1
lo=1 rg =5 Ih=1 '1‘225
Dise(ey) = 25 Dise(ea) =41

@ number of conflicts in a set of objects X: conflict(X) =}, ; NiN;
@ the discernibility of a cut (a,¢):

W (c) = conflict(U) — conflict(Ur) — conflict(Ur)

where {Ur,Ugr} is a partition of U defined by c.
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Outline

e Concept Approximation with Layered learning
@ General idea
@ Applications
@ Differential Approach to Continuous Decision
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Outline

e Concept Approximation with Layered learning
@ General idea
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Hardness of Approximation

Why the concept approximation problem is hard?
o Learnability of the target concept: some concepts are too complex
and cannot be approximated directly from feature value vectors.
e PAC algorithms;
e Effective learnability of some concept spaces;
e VC dimension, ...
e Time and space complexity: Many problems related to optimal
approximation are NP-hard.
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Rough Classifier Defined by Rules

Nguyen Hung Son (University of Warsaw, P
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Rough Classifier Defined by Rules

reRyes

Wyes = Z strength(r)

Wpo = Z strength(r)

reRyo

Nguyen Hung Son (University of Warsaw, P
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Rough Classifier Defined by Rules

Wyes = Z strength(r) Wpo = Z strength(r)
TeRyes rcRno

undetermined if max(wyes, Wno) < w
0 if Wno — Wyes 2> 0 and Wy > w
if Wyes — Wno = 8 and wyes > w

0 es— Wno H
L“”Tw) in other cases

B
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Rough Classifier Defined by Rules

X

S
Wyes = Z strength(r) Who = Z strength(r)
I'ERyes rcRnyo
Wyes
. . Ho = d
undetermined if max(wyes, Wno) < w
0 if Wno — Wyes > 6 and w,
po(r) = 1 if Wyes — Wno > 0 and w,
Ot{wyee—wno) i other cases @ .
0 wwﬁ
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Reasoning via Layered Learning

\ Teacher

Nguyen Hung Son (University of Warsaw, P

Universe

\
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Learning agent
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Reasoning via Layered Learning

G iven . —— Universe
@ U: the set of examples; A.’ ; .
@ A: the set of attributes; J ' v L
X' € Ly: an approximated
e H: concept decomposition ? e eserten orx
H . A ¥ X X
diagram; él; L% o)

o D =decc,,decc,, ...decc

. Teacher
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Reasoning via Layered Learning

Universe

Given:

@ U: the set of examples;
@ A: the set of attributes:

X' & Ly an approximated

@ H: concept decomposition desaIbpa Q1 X
diagram;
° D = deccl Y decCZ’ ...d@CC Teacher F\.earmng agsn

Goal: For each concept C' in the hierarchy:
@ construct a decision system S¢;

@ induce a rough approximation of C, i.e., a rough membership
functions for C: [uc+(z), po- ()]
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Reasoning via Layered Learning

Universe

\
/ N — =
/ \
\
\ y
\ 4
S Y

X' & Ly an approximated

Given:

@ U: the set of examples;
@ A: the set of attributes:

@ H: concept decomposition desaIbpa Q1 X
diagram; @
° D = deccl Y deCCZ ’ e .d@CC Teacher j:}:\_eammg agsn

Goal: For each concept C' in the hierarchy:
@ construct a decision system S¢;
@ induce a rough approximation of C, i.e., a rough membership
functions for C: [uc+(z), po- ()]
System control: The system can be tuned by
@ uncertainty parameters: 0,

@ learning parameters for each level. $
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@ A: the set of attributes; J ' v L
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Reasoning via Layered Learning

Universe

Given:

@ U: the set of examples;
@ A: the set of attributes:

X' & Ly an approximated

@ H: concept decomposition desaIbpa Q1 X
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° D = deccl Y decCZ’ ...d@CC Teacher F\.earmng agsn

Goal: For each concept C' in the hierarchy:
@ construct a decision system S¢;

@ induce a rough approximation of C, i.e., a rough membership
functions for C: [uc+(z), po- ()]
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X' & Ly an approximated

Given:

@ U: the set of examples;
@ A: the set of attributes:

@ H: concept decomposition desaIbpa Q1 X
diagram; @
° D = deccl Y deCCZ ’ e .d@CC Teacher j:}:\_eammg agsn

Goal: For each concept C' in the hierarchy:
@ construct a decision system S¢;
@ induce a rough approximation of C, i.e., a rough membership
functions for C: [uc+(z), po- ()]
System control: The system can be tuned by
@ uncertainty parameters: 0,

@ learning parameters for each level. $
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Two-layered Approach to Concept Approximation

Typical KDD task:

Searching for patterns from data to describe a concept (sets of objects) or
a relation.
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Two-layered Approach to Concept Approximation

Typical KDD task:

Searching for patterns from data to describe a concept (sets of objects) or
a relation.

Our proposition:
Decompose the concept approximation problem into:

@ Searching for (rough) approximation of the relevant relation:
R+— R=(R,R)

@ inducing the approximation of the target concept using the partial
knowledge about the relation R.

34 / 64
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Pairwise Space

Vit.A | Vit.C | Fruit || Vit.A | Vit.C | Fruit Vit ¢
1.0 0.6 Apple 2.0 0.7 Pear ke R = .
1.75 0.4 | Apple 2.0 1.1 Pear 1 .. . 1
1.3 0.1 | Apple 1.9 0.95 | Pear .
0.8 0.2 Apple 2.0 0.95 | Pear o .
1.1 0.7 | Apple 2.3 1.9 Pear 06 oo
1.3 0.6 [ Apple 2.5 1.15 | Pear o
0.9 0.5 | Apple 2.5 1.0 Pear E "
1.6 0.6 Apple 2.9 1.1 Pear 02 a -
1.4 0.15 | Apple 2.8 0.9 Pear . o i
1.0 0.1 | Apple 3.0 1.05 | Pear 0 05 15 2 25 a

Gi New decision table

ven

Decision table

S = (U, AU {dec})

dq, — distance function on a;

Nguyen Hung Son (University of Warsaw, P

@ U x U — pairs of objects;

@ 0,4, (z,y) — continue attributes;

d(.’L‘,y) =

0 dec(x) = dec(y)

1 otherwise

g
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Example of pairwise space
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lllustration of some relations in the pairwise space

(x,y) € 2 (€1,..., k) & (x,y) € T3 (w) &
da; (z,y) < g for any a; € A. dar (2, y) + ... + Wba, (x,y) <w
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Layered learning algorithm

1: for [ := 0 to maz_level do

2:  for (any concept Cj, at the level [ in H) do

3: if [ =0 then

4: Sck = (U, Ak, dech);

5: else

6: A = U Oki;

7: Sck = (U, Ak, deCCk);

8: end if

9: generate the rule set RULES(Sc, ) for decision table S¢;, ;
10: generate the output vector O = {wgaks, wSk},
11:  end for

12: end for
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Example: Nursery data set

@ Creator: Vladislav Rajkovic et al. (13 @ Date: June, 1997
experts) @ Number of Instances: 12960
@ Donors: Marko Bohanec (instances completely cover the
(marko.bohanec@ijs.si) attribute space)
Blaz Zupan (blaz.zupan@ijs.si) @ Number of Attributes: 8
Attributes
NURSERY not_recom, recommend, very_recom, priority, spec_prior
. EMPLOY Employment of parents and child’s nursery
. . parents usual, pretentious, great_pret
. . has_nurs proper, less_proper, improper, critical, very_crit
. STRUCT_FINAN  Family structure and financial standings
. . STRUCTURE Family structure
.. . form complete, completed, incomplete, foster
. children 1, 2, 3, more
. . housing convenient, less_conv, critical
. . finance convenient, inconv
. SOC_HEALTH Social and health picture of the family
. social non-prob, slightly_prob, problematic
. . health recommended, priority, not_recom
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Method:
@ Use clustering algorithm to approximate intermediate concepts;

@ Use rule based algorithm (RSES system) to approximate the target
concept;
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Method:
@ Use clustering algorithm to approximate intermediate concepts;

@ Use rule based algorithm (RSES system) to approximate the target
concept;

Results: (60% - training, 40% — testing )
original attributes only | using intermediate concepts

Accuracy | 83.4 99.9%
Coverage | 85.3% 100%
Nr of rules | 634 42 (for the target concept)

92 (for intermediate concepts)
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Outline

e Concept Approximation with Layered learning

@ Applications
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Sunspots Recognition and Classification

Nguyen Hung Son (University of Warsaw, P
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Sunspots Recognition and Classification
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Road Situation Simulator

Maximal ber of vehicles: 20
Current number of vehicles: 14
Humidity: LACK

Visibility: 500

Traffic parameter of main road: 0.5 1
Traffic parameter of subordinate road: 0.2
Current simulation step: 68 (from 500)
Saving data: NO

Main road

O |
Minor road

CIRY= = Er =
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Road Situation Simulator

Safe driving

Safe
overtaking

Forcing the Moximal number of vebicles: 20
Safe di right of way . Main road
from FR1
Safe distance Possibility of Possibility of safe
from FL during going back to stopping before the
overtaking the right lane crossroads

SENSORS

Minor road
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5
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Road Situation Simulator

Safe distance
from FR1

Forcing the

Maximl number of vehicles: 21
right of way Current number of vehicles: 14 Main road
umidig LACK
Viiity: 500 '
Traffic parameter of main roadk 0.5 i
Traffic parameter of subordinate oad: 0.2 i
g data: O

Safe
overtaking

STOP sign
Safe distance Possibility of Possibility of safe
from FL during going back to stopping before the
overtaking the right lane crossroads : ()
(:)
Minor road

e Universe = set of vectors s(c,t), where

e cis a car; FL.!
e t is a time instant;

-1-FR2

i
@ Concept = "Dangerous situation on the road”; i‘----m
o Evaluation measures: i
o True positive rate; ol .i e
o Coverage rate; i‘"“““ )
o Computation time; \*
o Rule sizes;
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Outline

e Concept Approximation with Layered learning

@ Differential Approach to Continuous Decision
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[[I-defined data

@ The proteochemometrics can be seen as the search for possible
combinations of ligand-receptor sites with optimal binding strength.

@ The ability of the binding affinity prediction is crucial in this task

@ the experimental method is very expensive both in terms of time and
monetary value.

@ This is the reason why data sets in this domain have small sizes.
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Differential Calculus to Function Approximation

o ill-defined data: limited number of objects and large number of

attributes;

@ prediction of a real decision variable based on nominal attributes;

@ the need for the knowledge about the real mechanisms behind the

data;
No. | Combination B-1 1-4 46 6-E PB PE | Binding affinity
1 A2B2C2D2a2b2 | 1 1 1 1 1 1 4.52526247
2 A1B2C1D1a2b2 | -1 1 -1 -1 1 1 4.818066119
3 A1B2C2D1a2b2 | -1 1 1 -1 1 1 5.036009902
39 | AlB1C1D1lalbl | -1 -1 -1 -1 -1 -1 | 8963821581
40 | A1B1C1D1a2bl | -1 -1 -1 1 1 -1 | 8.998482244
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Existing solutions:

data and sizes possible comb. dec. domain
dataset A:40 x 6 64 (0, 10)
data set B : 60 x 8 384 (0, 10)
data set C : 130 x 55 241311426 (0,10)

@ Regression tree, linear regression: 7

@ Discretization of decision attribute: ?
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Our propositions:

@ 2-layered learning idea and decision rule techniques.
@ we decompose this learning task into several subtasks:

@ Approximate the preference relation between objects;

@ Use approximate preference relation to solve other subtasks:
- learning ranking order,
- prediction of continuous decision value, or
- searching for optimal combination.
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Two-layer method

Input

1. A decision table
S a; as ... | dec
w |1 -1 ... | 423
us | 1 1 ... | 431
u, | -1 1 ... | 8.92

2. Domain knowledge
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Two-layer method

First level
@ Create comparing table
Ag, Ag, ... | change

|n . U1, U 1—1 —1—1 /‘

p U, us \,
1. A decision table

S a; as ... | dec

u | 1 -1 .. | 423 @ Learn the preference relation, i.e., decision

up |1 1 .. | 431 rules of form

Ay, i —1—=1Nag=1... = change :\‘)

up | -1 1 ... | 8.92
2. Domain knowledge
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Two-layer method

Input

1. A decision table
S aq as dec
w |1 -1 423
ug | 1 1 4.31
u, | -1 1 8.92

2. Domain knowledge

Nguyen Hung Son (University of Warsaw, P

First level
@ Create comparing table
Ag, Ag, ... | change
u,ug [ 1—>1 —-1—1 ... | &
U1, ug N\

@ Learn the preference relation, i.e., decision

rules of form

Ay, —1—=1Nag=1.

.. = change =\,

Second level

@ Ranking prediction;

@ Decision value prediction;

@ Experiment design, action rules;

4
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Mathematical analogy

Real function analysis

Searching for maximum of a real

function f: RF - R

@ Get some information about
its differential, e.g., gradient

daf daf
@ Discover the properties of
f(x0) from its differential,
e.g.,
V f(x0) is the direction
which promises maximum
increase of f

y

Nguyen Hung Son (University of Warsaw, P
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Mathematical analogy

Real function analysis

Searching for maximum of a real

function f : RF - R

@ Get some information about
its differential, e.g., gradient

_/df df
vf—<d_:l:1’...7d_1:k>

@ Discover the properties of
f(x0) from its differential,
e.g.,

V f(x0) is the direction
which promises maximum
increase of f

y

Nguyen Hung Son (University of Warsaw, P

RS in ML & DM

Rough differential calculus

@ Assume F is the right function

for target concept, i.e.,

C= .F(al, ceey ak)
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Mathematical analogy

Real function analysis Rough differential calculus

Searc.hlng for ;naxmum of a real @ Assume F is the right function
function f: R" = R for target concept, i.e.,
© Get some information about

its differential, e.g., gradient C = Fl(ay, ..., a)
V= <i i> @ Decision rules for the comparing
dri’ 7 dxy, table indicate:
How the changes on attributes
@ Discover the properties of effect on the changes of decision
f(x0) from its differential,
e.g.,

V f(x0) is the direction
which promises maximum
increase of f y)

y 2
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Mathematical analogy

Real function analysis
Searching for maximum of a real
function f : RF - R
© Get some information about
its differential, e.g., gradient

daf daf

w_<d$1,...,d$k>
Discover the properties of
f(x0) from its differential,
e.g.,
V f(x0) is the direction
which promises maximum
increase of f

y

Nguyen Hung Son (University of Warsaw, P

RS in ML & DM

Rough differential calculus
@ Assume F is the right function

for target concept, i.e.,

C= .F(al, ceey ak)

@ Decision rules for the comparing
table indicate:
How the changes on attributes
effect on the changes of decision

@ Such rules are discovered
knowledge!
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Mathematical analogy

Real function analysis Rough differential calculus
Searching for maximum of a real @ Assume F is the right function
function f : R* — R for target concept, i.e.,
@ Get some information about
its differential, e.g., gradient C = Fl(ay, ..., a)
Vf = <df df> @ Decision rules for the comparing
dr,’ " dxy table indicate:
How the changes on attributes
© Discover the properties of effect on the changes of decision
f(x0) from its differential,

eg @ Such rules are discovered
= . . knowledge!

V f(x0) is the direction _ 5

which promises maximum @ Meaning of rough set rules:
increase of f short, certain, possible

y 2
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Ranking

@ Ranking learning can be understood as a problem of reconstruction of
the correct ranking list of a set of objects;

o Let S= (U, AU {dec}) be a training data set and (uy, ..., uy,) is an
ordered sequence of objects from U according to dec, i.e.,

dec(uy) < dec(ug) < ... < dec(uy).

@ The problem is to reconstruct the ranking list of objects from a test
data set S = (V, AU {dec}) without using decision attribute dec.

@ Our algorithm is based on the round robin tournament system which
is carried out on the set of objects U U V.
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Round robin algorithm for ranking

@ Similarly to football leagues, every object from V' — playing the

tournament — obtains a total score summarizing its played matches.

@ The objects from V' are sorted with respect to their scores.

@ The scoring method use 7, ;7 (x, y)as a referee:

Score(x) = Z w(y) - mLu(x,y)
yeUuuv

where w(y) is a weighting parameter that measures the importance of

the object y in our ranking algorithm. In our experiments:

() = 1 if y is a test object, i.e., y € V;
b= 1—1—% ify=u; € U.

@ The algorithm can be applied for all the objects from U UV
to embed V' into the ordered sequence (uy,ug, ..., uy).
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Evaluation of ranking algorithms

@ There are several well known "compatibility tests” for this problem,
e.g., Spearman R, Kendall 7, or Gamma coefficients.

o If the proper ranking list of V' is denoted by X = (1, z2..., ), then
the second ranking list is a permutation of elements of V/, and
represented by Y = (Z,(1), T (2)5 -+ To(k))

@ The Spearman coefficient for a permutation
o:{1,...,k} = {1,....,k} is computed by

63 iy (o (i) — i)
L V(RS ")

@ The Spearman coefficient takes values from [—1;1].
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Further applications

@ Prediction of continuous decision:
e Embed the object = into the sequence (u1,uo, ..., u,) by applying
ranking algorithm for objects from {z} UU
e Assuming that x is embedded between u; and u; 1, then

d i) + dec(u;
prediction(zx) = ec(u;) +2 ec(uiy)

is returned as a result of prediction.
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Further applications

@ Prediction of continuous decision:
o Embed the object « into the sequence (uy,us, ..., u,) by applying
ranking algorithm for objects from {z} UU
e Assuming that x is embedded between u; and w; 1, then

d i) +d ;
prediction(z) = ec(ui) +2 ec(tit1)

is returned as a result of prediction.

@ Experiment design:
Point out the minimal number of changes that can improve the
current combination;
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Further applications

@ Prediction of continuous decision:
o Embed the object « into the sequence (uy,us, ..., u,) by applying
ranking algorithm for objects from {z} UU
e Assuming that x is embedded between u; and w; 1, then

d i) +d ;
prediction(z) = ec(ui) +2 ec(tit1)

is returned as a result of prediction.

@ Experiment design:
Point out the minimal number of changes that can improve the

current combination;

@ Optimization by dynamic learning;
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The prediction algorithm

Let the training set of objects U = {uy, ...u, } be given. The prediction
algorithm computes the decision value of the test object = ¢ U as follows:

The algorithm:

Require: The set of labeled objects U and unlabeled object x;
parameters: learning algorithm L
Ensure: A predicted decision for x;
1: Embed the object z into the sequence (uy, ug, ..., u,) by applying
ranking algorithm for objects from {z} U U using L and decision table
for U;
2: Let us assume that z is embedded between w; and w;41;

3: Return prediction(z) = w as a result of prediction.

The error rate on the set of testing objects V' is measured by

error(V) = card Z |dec(x) — prediction(x)|

:(:EV *
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Dynamic ranking

@ The quality of ranking algorithm can be low due to the small number
of objects.

@ In many applications the number of training objects is increasing in
time, but it is connected with certain cost of examination.

@ We can treat a ranking problem as an optimization problem:
- get the highest value element (combination)
- require as low as possible the number of examples, i.e., to minimize
the number of examinations and the cost of the whole process.
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Dynamic ranking algorithm

The dynamic ranking algorithm

Require: The set of labeled objects U and unlabeled objects V;
parameters: learning algorithm L and positive integer request_size;

Ensure: A list of objects to be requested; Ranking of elements in the Us

in the RankList;

U1 ~— U; U2 ~—V:

RankList < [|; //the empty list

while not STOP CONDITION do
Rank elements of Us by using L and decision table for Uy; Let this
ranking list be: (z1,z2,...);

5 for i = 1 to request_size do

6 Rank List.append(z;)

7 Uy %UlU{$i}; Us (*UQ\{?L‘Z'};

8

9

e @R E

end for
. end while
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Experiments - Data sets

@ 4 tables:

data and sizes

possible comb. dec. domain

dataset A:40 x 6 64 (0,10)
data set B : 60 x 8 384 (0,10)
data set C : 130 x 55 241311426 (0, 10)
Artificial : 64 x 6 64 (5.7,33)

Artificial decision:

dec = e + (a1 +az+as+as+as) xag/az+sin(as) +1n(as) + noise

@ 6 learning algorithms

@ 7-fold cross validation

Nguyen Hung Son (University of Warsaw, P
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Results for real data

Learning Table A Table B Table C
algorithm acc.(%) pred.error | acc.(%) pred.error | acc.(%) pred.error
rough set 79.26 0.4843 81.63 0.3815 75.57 0.4328
naive bayes 72.7 0.849 74.22 0.5355 56.89 0.8925
nnge 76.75 0.5170 80.54 0.345 - -
boost nnge 80.67 0.4383 83.76 0.3779 - -

48 75.8 0.6981 81.29 0.3821 76.2 0.4958
boost j48 80.17 0.4935 85.23 0.318 - -
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Results for artificial data

Learning Ranking Prediction Dynamic Ranking
algorithm Spearman acc.(%) | Pearson pred.error | pos. Spearman
Decision Rules 0.8930 83.28% | 0.9653 1.4547 1.3 0.9501
Naive Bayes 0.7984 78.52% | 0.5948 3.8336 1.3 0.8540
Nnge 0.7770 77.19% | 0.9178 1.8245 2.5 0.9165
Boosting Nnge 0.8318 80.27% | 0.9184 1.6244 1.6 0.9433
C45 0.7159 75.7% 0.8372 2.2108 2.7 0.8736
Boosting C45 0.8536 80.74% | 0.9661 1.3483 1.6 0.9475
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Outline

0 Exercises
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Exercise 1: decision rules vs. decision tree

Each path of decision tree can be interpreted as a decision rule. Thus
decision tree can be treated as a set of decision rules.

© True or false: "Each path of a minimal decision tree is a minimal
consistent decision rule” 7
@ What are the main differences between

@ the set of decision rules in rough classifiers; and
@ the set of decision rules stored in a consistent decision tree?

© Find the maximal possible number M (k) of minimal and consistent
decision rules for a decision table with k attributes?
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Exercise 2: Boundary cuts

Prove that if ¢ is the best cut for an atribute then ¢ must be one of the
boundary cut.

@ i . =] i .
o i i o
o | i °
| ° | °
o . o i .
; . ; .
o | | o
. E . . E
o o | o | o
° (a1 i . < i (3 .
Il 4 ™ = 5 Il 8 ™ = 1
Eg_l '3‘225 EQ_I 3325
Discler) = 25 Diselez) =41
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Exercise 3: Are the best cuts really good?

A real number v; € a(U) is called single value of an attribute a if there is exactly
one object u € U such that a(u) = v;. The cut (a;c) is called the single cut if ¢
is lying between two single values v; and v;y1.

Prove the following properties related to single cuts:

Theorem

In case of decision tables with two decision classes, any single cut c;,
which is a local maximum of the function Disc, resolves at least half of
conflicts in the decision table, i.e.

Disc(¢;) > % - conflict (S) .

v

What can you say about the depth of decision tree build by MD-heuristics?
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Applications of Rough sets in
Machine Learning and Data Mining
Part Ill: Rough sets and Data mining

Nguyen Hung Son
University of Warsaw, Poland

Milan, 26 July 2016
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Rough set approach to ML and Data Mining

Objects?

Attribute?
Decision table:

Reduct calculation
values?

Decision?

Variables?

Prime Implicant

Problem in ML or DM

Boolean function

Clauses?

Objects

Approximation Space Similarity Concept approximations

other parameters

iversity of Warsaw, RS in ML & DM

Nguyen Hung Son (

Milan, 26 July 2016 2 /65



Outline

@ Rough sets and association analysis
@ Rough sets and association rules
@ Scalable Rule-based Classifier

© Soft decision tree
@ Soft cuts

© Rough sets and Text mining
@ Clustering of Web Search Results
e Extended TRSM
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Outline

@ Rough sets and association analysis
@ Rough sets and association rules
@ Scalable Rule-based Classifier
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Outline

© Rough sets and association analysis
@ Rough sets and association rules
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Association rule generation

Problem:

For a given information table A, an integer s, and a real number ¢ € [0, 1],
search for as much as possible association rules R such that

support(R) > s and con fidence(R) > ¢;

Association rule generation methods consist of two steps:
@ Generate as much as possible frequent templates T'= D1 A ...Dy,

. T={AIBICDIE}

Support (T) = min_support
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Association rule generation

Problem:

For a given information table A, an integer s, and a real number ¢ € [0, 1],
search for as much as possible association rules R such that

support(R) > s and confidence(R) > c;

Association rule generation methods consist of two steps:
© Generate as much as possible frequent templates T'= D1 A ...Dy

@ For any template T, search for a partition "= P A (T — P) s.t.:
P — (T-P)
Support (P) < Support(T)/ ¢

>T={A, B, C,D, E}

— ———R1: {B,D}— {A, C, E}
R2: {A, C, D} > {B, E} *
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Reduct approach to association rules

Surprise!l: the second step can be solved by rough set methods (using
a-reducts).
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Reduct approach to association rules

Surprise!l: the second step can be solved by rough set methods (using
a-reducts).
Theorem
Given:
@ D - an information system,
o T — a template,
@ ¢ — minimal confidence level:

An implication P = (T — P) is c-confident association rule if and only if
P is an a-reduct of a decision table D|r, where

1/e—1

—1—
“ n/support(T) — 1
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For ¢ = 100% we have a = 100%

100% ass. rules

RS in ML & DM

C.E= A,B,D

D,E= A,B,C

A B,C=D,E

ABD=CFE

A B,E=C,D

A,C,D= B,E
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For ¢ = 100% we have a = 100%

100% ass. rules

C,E= A,B,D

D,E= A,B,C

A, B,C=D,E

A,B.D=C,E

A B,E=C,D

A,C.D=B,E

For ¢ = 90% we have

a=1-—

1_
c

n ]

s

= 0.86

A,B=C,D,E

A C=C D E

A, D= B,C,E

90% ass. rules

AE= B,C,D

B,C= A D,E

B,E= A,C,D

CD=AB,E
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For ¢ = 100% we have a = 100%

C,E= A B,D

D,E= A,B,C

A,B,C=D,E

0,
100% ass. rules ABD=CE

A, B E=C,D

A,C,D= B.E

For ¢ = 90% we have

1

=1—-% =0.
o o 0.86

n

A,B=C,D,E
A,C=C,D,E
A D= B,C,E
90% ass. rules| A,F = B,C,D
B,C= A,D,E
B,E= A,C,D
C,D= AB,E
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Outline

© Rough sets and association analysis

@ Scalable Rule-based Classifier
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Eager vs. lazy rough classifiers

Decision table S—— @ccision rule gcncratioa

Rule set RULES(S)

New object 2 — < Rule selection )

MatchedRules(S, x)

dec(z) +——m— < Classification >

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 10 / 65



Eager vs. lazy rough classifiers

Decision table S

New ohject 2 — ( Rule selection )

MatchedRules(S, z)

( Classification ) ——dec(zx)
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Apriori-based reduct calculation

Alay as

as a4 | dec

IDJoutlook temp.

hum. windy |play

1|sunny  hot
2 |sunny  hot
3 |overcast hot
4 |rainy  mild
5 |rainy  cool
6 [rainy  cool
7 |overcast cool
8 |sunny  mild
9 |sunny  cool
10Jrainy ~ mild
11|sunny  mild
12|overcast mild
13|overcast hot
14|rainy  mild

high  FALSE| no
high  TRUE | no
high  FALSE| yes
high  FALSE| yes
normal FALSE| yes
normal TRUE | no
normal TRUE | yes
high  FALSE| no
normal FALSE| yes
normal FALSE| yes
normal TRUE | yes
high  TRUE | yes
normal FALSE| yes
high  TRUE| no

x |[sunny  mild

high TRUE| ?

A|$|d1 dg d3 d4 |dec
ID |a1|s a2|x aslz a4]z|dec
111 0 1 0 |[no
211 0 1 1 Jno
310 0 1 0 |yes
410 1 1 0 |yes
510 0 0 O |Jyes
610 0 0 1 |no
710 0 0 1 |yes
8|1 1 1 0 |no
911 0 0 O |yes
1010 1 0 O |yes
1111 1 0 1 |yes
1210 1 1 1 |yes
1310 0 0 0 |yes
1400 1 1 1 |no

Nguyen Hung Son (University of Warsaw,

RS in ML & DM

Milan, 26 July 2016

11 / 65



Standard (eager) method

rules supp.

outlook(overcast)=-play(yes)

humidity(normal) AND windy(FALSE)=-play(yes)

outlook(sunny) AND humidity(high)=-play(no)

outlook(rainy) AND windy(FALSE)=-play(yes)

outlook(sunny) AND temperature(hot)=-play(no)

outlook(rainy) AND windy(TRUE)=-play(no)

outlook(sunny) AND humidity(normal)=-play(yes)

temperature(cool) AND windy(FALSE)=>play(yes)

temperature(mild) AND humidity(normal)=-play(yes)

temperature(hot) AND windy(TRUE)=-play(no)

outlook(sunny) AND temperature(mild) AND windy(FALSE)=-play(no)
outlook(sunny) AND temperature(cool)=-play(yes)

outlook(sunny) AND temperature(mild) AND windy(TRUE)=-play(yes)
temperature(hot) AND humidity(normal)=-play(yes)

~

HEERERERRENNMNMNNNDWWS

o o O T
A A A A A A AAAAAA

The testing object
(sunny, mild, high, TRUE)
is matched by two decision rules:
@ (outlook = sunny) AND (humidity = high) = play = no (rule nr 3)

@ (outlook = sunny) AND (temperature = mild) AND (windy = TRUE) = play = yes {4
(rule nr 13) &

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 12 / 65



Lazy algorithm on A,

Amaz = 3;0min = 1 &min =1

i=1 =2
Cl check R1 F1 CQ check R2 F2
{di} | (3.2) {di} || {di,d2} | (1.1) {d1,d2}
{d2} | (42) {d2} || {d1,ds} | (3.0) | {d1,ds}
{ds} | (43) {da} || {di,da} | (11) {d1,da}
{da} | (33) {da} || {d2,d3} | (2.2) {d2,ds}
{d2,ds} | (1,1) {d2,da}
{ds,da} | (2.1) {ds, d4}
1 =3
C3 check Rs F3
{di,d2,d4} | (0,1) | {d1,d2,dsa}
{d2,ds,ds} | (1,1) {d2,ds, ds}
MatchRules(A,z) = Ro UR3:
(outlook = sunny) AND (humidity = high) = play = no
(outlook = sunny) AND (temperature = mild) AND (windy = TRUE) = play = yes

Nguyen Hung Son (University of Warsaw,

RS in ML & DM

Milan, 26 July 2016
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FDP(Frequent Decision Pattern)-tree

@ The key concept, adopted from FP-growth algorithm for frequent
pattern mining;

@ FDP is the prefix tree for the collection of ordered list of descriptors;
@ Each node in FDP tree has four fields:

e descriptor name is the name of descriptor,

e support is the number of training objects that contain all descriptors on
the path from the root to the current node,

e class_distribution is the detail support for each decision class and

e node_link are used to create list of nodes of the same descriptor

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 14 / 65



General scheme

e Construction of F'DP(x). This step requires only two data scanning
passes:
e First pass:

o calculate the frequencies of descriptors from infa(x)
o create DESC/(x) — the ordered list of frequent descriptors;

e Second pass:

@ convert each training object w into a list D(u) of frequent descriptors
from DESC/(zx) that occur in infa(u);
o insert the list D(u) into the data structure FDP(x).

o Generation of the set of frequent decision rules from FDP(z) by a
recursive procedure.

@ Insert the obtained rules into a data structure called the minimal rule
tree — denoted by M RT(x) — to get the set of irreducible decision
rules. This data structure can be used to perform different voting

strategy. &

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 15 / 65



Example: FDP-tree construction — | step

A ai az as a4 dec
ID | outlook | temp. | hum. | windy || play ID | descriptor lists | dec
1 | sunny | hot | high |FALSE | no 1 |d3.di no
2 | sunny | hot | high | TRUE || no 2 |d3, d4. d1 no
3 | overcast | hot high | FALSE || ves 3 |d3 yes]
4 | rainy | mild | high |FALSE || ves 4 |d3, d2 yes
5 rainy cool | normal | FALSE || ves 5 yes
6 rainy cool | normal | TRUE || no 6 |d4 no
7 | overcast | cool | normal | TRUE || ves — T |d4 yes]
8 sunny | mild high | FALSE || no 8 | d3, d2 dl no|
0 | sunny | cool |normal | FALSE || yes 0 |dl yes|
10| rainy | mild | normal | FALSE || yes 10 | d2 yes|
11 | sunny mild | normal | TRUE || ves 11 [ d2, d4. d1 ves]
12 | overcast | mild high | TRUE || ves 12 [ d3. d2, d4 ves|
13 | overcast | hot | normal | FALSE || yes 13 yes]
14| rainy | mild | high | TRUE || no 14 | d3. d2. dd no]
T sunny mild high TRUE 7
Deseriptor: | (outlook=sunny) | (temp.=mild) | (hum.=high) | (windy=true)
Notation: |dl d2 d3 d4
Frequency: | 5 6 7 6

Nguyen Hung Son (University of Warsaw,
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Example: FDP-tree construction — Il step

@
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Example: FDP-tree construction — Il step

d3 -
d2 I S
d4 | --"
-'
d1 -

’
e mmm
-

guyen Hung Son (University of Warsaw,

¥
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Example: Rule extraction from FDP-tree

1 | (outlook = sunny) A (hum. = high) = play = no
2 | (outlook = sunny) A (temp = mild) A (windy = TRUE) = play = yes
3 | (outlook = sunny) A (temp. = mild) A (hum. = high) = play = no
4 | (outlook = sunny) A (hum. = high) A (windy = TRUE) = play = no
d3
d2
d4
d1i
1 | (outlook = sunny) A (hum. = high) = play = no
2 | (outlook = sunny) A (temp. = mild) A (windy = TRUE) = play = yes |,

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 18 / 65



Data sets

o Data sets: Poker Hand, Covertype, Pen-Based Recognition of
Handwritten Digits

@ Source: UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets)

e Testing objective: performance, scalability, accuracy.

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 19 / 65


http://archive.ics.uci.edu/ml/datasets

Pendigit

16 attributes, 10 decision classes, 7494 training objects, 3699 test objects;

0.03 1400 T T T

1200 B

1000 - 4

To_growth —+—
1Bk -
LBR -

85 L L L 0 " I
1000 2000 3000 5000 7494 1000 2000 3000 5000 7494
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Poker Hand data

10 attributes, 10 decision classes, 1000000 training objects, 1000 test
objects

095 T : T 18000 r

] 16000 - A
1 14000 |- 4
1 12000 g

10000 4
To_growth —+— -
1Bk -

- o N » o
J LBR % 8000 - -

g 6000 - 1
06k 4 4000 ~ ,

056 - 2000 - ‘x" —

osb . o e
2060100 200 500 1000 2060100 200 500 1000
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Poker Hand data — height of FDP-tree

9.5

8.5

Wysokog
[o=]

7.5

6.5

guyen Hung Son (University of Warsaw,

Wysoko£: glownego drzewa FP dla zbioru pokerhand

T ""1' T T

T_*-_ ' ' |
r ‘ | | i
2050100 200 500

Wielko# zhioru treningowego [tys.]
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Poker Hand data — nr of nodes

Liczba wierzchotkéw giéwnego drzewa FP dla zbioru pokerhand.
1000 r—r— \

min —+—
avg

Liczba wierzchotkow

300 L1 | | | ﬁ
2060100 200 500 1000
Wielko£ zbioru treningowego [tys.]
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Poker Hand data — nr of rules

Liczba wygenerowanych regut decyzyjnych dla zbioru pokerhand.

80 T I |
0% |
60 | |
50 |- |
-,
o i i
g | avg oo
8 / o
: -
,_*' |
: Feo
. '—.‘. .‘"-». “--“"--‘_
! '. - 3
| ‘
10 b T - e —— |
L1 o ﬂ

0
2050 100 200 500 1000

Nielkod® 7hioru freninaowenan s 1
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Covertype

54 attributes, 7 decision classes, 580000 training objects, 500 test objects;

07

066 [ T

058 |7

rowth ——
PTGk
LBR ---%---

L L L
20 50 100 200
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Covertype — height of FDP-tree

Wysokog gldwnego drzewa FF dla zbioru covertype.

52

51 4

50

49

Wysoko&

48

47

46

45

T Rl

=+

100 200
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Covertype — nr of nodes

Liczba wierzchotkow glownego drzewa FP dla zbioru covertype.

R T T
i 1
= 2500 _
O -
J: .
g min —+—
a 77- )
H * | N
N 2000 - |
: * s-m="
1500 L
1000 L—1 | | E
20 50 100 200 |

Wielko& zbioru treningowego [tys.]
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Covertype — nr of rules

Liczba wygenerowanych regut decyzyjnych dla zbioru covertype.

90 T T T T
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Outline

© Soft decision tree
@ Soft cuts
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Outline

© Soft decision tree
@ Soft cuts
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Soft cuts and soft DT

A soft cut is any triple p = (a,,r), where
@ a € A is an attribute,
@ [,r € R are called the left and right bounds of p ;

@ the value ¢ = %l is called the uncertain radius of p.

e We say that a soft cut p discerns a pair of objects 1,z if a (x1) <
and a (z2) > 7.

G a

@ The intuitive meaning of p = (a,l,r):
o there is a real cut somewhere between | and r.
o for any value v € [I,r] we are not able to check if v is either on the
left side or on the right side of the real cut.
o [l,r] is an uncertain interval of the soft cut p. $
e normal cut can be treated as soft cut of radius 0.
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Soft Decision Tree

@ The test functions can be defined by soft cuts

@ Here we propose two strategies using described above soft cuts:
o fuzzy decision tree: any new object u can be classified as follows:

o For every internal node, compute the probability that u turns left and u
turns right;

o For every leave L compute the probability that u is reaching L;

@ The decision for u is equal to decision labeling the leaf with largest
probability.

e rough decision tree: in case of uncertainty

o Use both left and right subtrees to classify the new object;

o Put together their answer and return the answer vector;

o Vote for the best decision class.
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Searching for best cuts

A (5] g agz d
wy | 1.0 | 20| 30 0
up | 20| 5.0 | 5.0 1
usz | 3.0 | 7.0 | 1.0 2
ug | 3.0 ] 6.0 1.0 1
us | 4.0 | 6.0 | 3.0 0
ug | 5.0 | 6.0 | 5.0 1
ur | 6.0 | 1.0 | 8.0 2
ug | 7.0 | 8.0 | 8.0 2
us | 7. 1.0 | 1.0 0
U1in 8.0 1.0 1.0 0

Otz Ous  Oila
. elz oly olls
Attr. ay -:31!1l O'u.rjl I O‘ugl [} /5TH)
T T T T T T T —
2 3 4 5 6 7

s el Otz  DOus
! . ol el @ly
Attr. az -:}Hgl ol l O‘L{-gl l

1 2 3 4 5 6 7 8

DOz Ous

Ha
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Entropy measure

o i -* [¢] } -
o H o
o | o
i = i o
o | . o i .
1 i :
o i o
. H . L] i .
o o : o] } o
o 1 i * ° i (& *
=4 71 =25 =8 ry=1
=1 ra=5 l2 = ra=75
Eler, X) = 0.907 E(e2. X) = 0.562

@ entropy of an object set X: Ent(X) = — Z?Zl pjlogp;

@ the entropy of the partition induced by a cut (a, c):

E(a,c;U) = 1] g, t(Ug) + 1Url g, t(Ug)

Ul Ul
Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016
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Searching for soft cuts

STANDARD ALGORITHM FOR BEST CUT

@ For a given attribute a and a set of candidate cuts {c¢y,
best cut (a, ¢;) with respect to given heuristic measure

F: {Cl, ...,CN} — RT

can be founded in time Q(N).

@ The minimal number of simple SQL queries of form

...,CN}, the

SELECT COUNT
FROM datatable
WHERE (a BETWEEN c¢; AND cgr) GROUPED BY d.

necessary to find out the best cut is Q(dN)
OUR PROPOSITIONS FOR SOFT CUTS
e Tail cuts can be eliminated

@ Divide and Conquer Technique
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Divide and Conquer Technique:
@ Divide the set of possible cuts into k intervals;
@ Select the interval that most probably contains the best cut;
© If the considered interval is not STABLE enough then Go to Step 1

Q Return the current interval(cut) as a result.

26000000
25000000 ) yd i
24000000
23000000
22000000 -
21000000 4

20000000 +

19000000 . Aid
166 107 228 258 200 321 352 383 414 3
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Divide and Conquer Technique:

@ The number of SQL queries is O(d - klog;, n) and is minimum for

k = 3;
@ How to define the measure evaluating the quality of the interval
[CL; CR]?
Li Lz Ly MM,...M, R R..R,
Cr Cr
¢
.xl xz"'.xd
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Discernibility measure:

We construct estimation measures for intervals in four cases:

Discernibility | Entropy Me-
measure asure
Independency as- | 7 ?
sumption
Dependency ? ?
assumption

Under dependency assumption, i.e.

O NPV AU e sttt s S B R
MlngimiMdiMl—l-...—l—Md M ’

discernibility measure for [c; cr] can be estimated by:

W(cr) + W (cr) + conflict(cr;cr) — [W(eg) — W(ep)]?
2 conflict(cp;zR)

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016
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Under dependency assumption, i.e. 1, ..., 24 are independent random
variables with uniform distribution over sets {0, ..., M1}, ..., {0, ..., My},
respectively.

@ The mean E(W (c)) for any cut ¢ € [cr; cr] satisfies

Wier) + Wi(cr) + conflict(cr;cr)

E(W(e) = 5

@ and for the standard deviation of W (c) we have

2
n

M;(M; + 2)
pror(e) = 30| M (S,
i=1 i
@ One can construct the measure estimating quality of the best cut in
[cL; cr] by

Eval ([ep; cr], ) = E(W(c)) + ay/D?(W(c))

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 39 / 65



Example

ersity of Warsaw,
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Experimental results

L L. 1, MM, ..M, R R>..R,

W(er) + Wi(cr) + conflict(cr; cr)
2

Eval ([cr; cr], o) = E(W(c)) =

Accuracy
| Data sets | #objectsx#attr. | SLIQ | ENT | MD | MD* |

Australian 690 x 14 849 | 852 | 86.2 | 86.2
German 1000 x 24 - 70 | 69.5 | 70.5
Heart 270 x 13 - 77.8 | 79.6 | 79.6
Letter 20000 x 16 846 | 86.1 | 85.4 | 83.4
Satlmage 6435 x 36 86.3 | 84.6 | 82.6 | 83.9
Shuttle 57000 x 9 99.9 | 99.9 | 99.9 | 98.7
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Outline

© Rough sets and Text mining
@ Clustering of Web Search Results
e Extended TRSM
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TRSM- Tolerance Rough Sets Model

o Let D ={dy,ds,...,dy} be a set of documents and
T = {t1,ta,...,tr} set of index terms for D

e TRSM is an approximation space R = (T, Iy, v, P) determined over
the set of terms T as follows:

o Tolerance classes of terms: (uncertain parameterized function by a
threshold )

Io(t;) = {t; | fo(tit;) > 0t U{t:}
where fp(t;,t;) = |{d € D : d contains both ¢; and ¢, }|
o Vague inclusion function: Fort; € T, X C T :
_ [To(t;) N X|
[ (t:)]

o Structural function: all tolerance classes of terms are considered as
structural subsets: P(Iy(t;)) =1 forall t; € T.

M(thX) = V(Ia(ti)7X)
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Tolerance classes

dl to

do

d3 O ts
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Example: tolerance classes

Term Tolerance classes for a query “jaguar’ using 200 | Document
results (returned by Google) and 6§ =9 frequency

Atari Atari, Jaguar 10

Mac Mac, Jaguar, OS, X 12

onca onca, Jaguar, Panthera 9

Jaguar Atari, Mac, onca, Jaguar, club, Panthera, new, | 185
information, OS, site, Welcome, X, Cars

club Jaguar, club 27

Panthera onca, Jaguar, Panthera 9

new Jaguar, new 29

information | Jaguar, information 9

0S Mac,Jaguar, OS, X 15

site Jaguar, site 19

Welcome Jaguar, Welcome 21

X Mac, Jaguar, OS, X 14

Cars Jaguar, Cars 24
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@ In context of Information Retrieval, a tolerance class represents a
concept that is characterized by terms it contains.

@ By varying the threshold 6 (e.g., relatively to the size of document
collection), one can control the degree of relatedness of words in
tolerance classes (or the preciseness of the concept represented by a
tolerance class).

o Finally, the lower and upper approximations of any subset X C T can
be determined — with the obtained tolerance R = (T, Iy, v, P) —
respectively as

Lr(X) ={ti € T | v(Ip(t:), X) = 1};

Ur(X)={t; e T | v(Ip(t;), X) > 0}

Nguyen Hung Son (University of Warsaw, RS in ML & DM Milan, 26 July 2016 46 / 65



Enriching document representation

o Let d; = {ti,,ti,....ti, } be a document in D.

@ A “richer” representation of d; can be achieved by its upper
approximation in TRSM, i.e.,

Ur(di) = {t: € T | v(Ip(t;), d;) > 0}
o Extended TF*IDF weighting scheme:

(14 log(fa,(t;)) * log %t]) iftj €d;

log _N
_ . fp(tj) .
w?jew = ming, ¢4, Wik * — Dy & if tj € UR(dl)\dz
1+log T5()
0 it t; ¢ Ur(d;)

where w;; is the standard TF*IDF weight for term ¢; in document d;.
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Title: EconPapers: Rough sets bankruptcy prediction models versus auditor
Description: Rough sets bankruptcy prediction models versus auditor signal-
ling rates. Journal of Forecasting, 2003, vol. 22, issue 8, pages 569-586.
Thomas E. McKee. ...

original vector using upper approximation
Term Weight | Term Weight
auditor 0.567 auditor 0.564

bankruptcy | 0.4218 | bankruptcy | 0.4196
signalling 0.2835 | signalling 0.282
EconPapers | 0.2835 | EconPapers | 0.282

rates 0.2835 | rates 0.282

versus 0.223 versus 0.2218
issue 0.223 issue 0.2218
Journal 0.223 Journal 0.2218

MODEL 0.223 MODEL 0.2218
prediction 0.1772 | prediction 0.1762
Vol 0.1709 | Vol 0.1699
applications | 0.0809
Computing | 0.0643
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Outline

© Rough sets and Text mining
@ Clustering of Web Search Results
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Clustering web search results

@ Searching on the web is tedious and time-consuming:

e search engines can not index the huge and highly dynamic web contain,
o the user’s “intention behind the search” is not clearly expressed which
results in too general, short queries;

@ Results returned by search engine can count from hundreds to
hundreds of thousands of documents.
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Clustering web search results

@ Searching on the web is tedious and time-consuming:

e search engines can not index the huge and highly dynamic web contain,
o the user’s “intention behind the search” is not clearly expressed which
results in too general, short queries;

@ Results returned by search engine can count from hundreds to
hundreds of thousands of documents.

© Clustering of search results = grouping similar snippets together:

o facilitate presentation of results in more compact form
o enable thematic browsing of the results set.
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Snippet clustering problems

nirLte  Grouper: A Dynamic Clustering Interface to Web Search Results
SUMMARY " There are two possiblelmodes of clustering VWeb search results. ... [18] AV Leouski
and WB Croft, An evaluation of techniques for clustering search results. ...
URL www8.org/wB-papers/3a-search-query/ dynamic/dynamic.html - 76k - Cached - Similar pages

@ Poor representation of snippets can result low correlation between
documents and document clusters;

@ Except good quality clusters, it is also required to produce meaningful,
concise description for cluster;

@ The algorithm must be fast to process results on-line.
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Snippet clustering problems

mirLe  Grouper: A Dynamic Clustering Interface to Web Search Results
SUMMARY " There are two possible modes of clustering Web search results. ... [18] AV Leouski
and WB Croft, An evaluation of techniques for clustering search results. ...
URL www8.org/wB-papers/3a-search-query/ dynamic/dynamic.html - 76k - Cached - Similar pages

@ Poor representation of snippets can result low correlation between
documents and document clusters;

@ Except good quality clusters, it is also required to produce meaningful,
concise description for cluster;

@ The algorithm must be fast to process results on-line.

Existing solutions:
use the domain knowledge likes thesaurus or ontology to correct the
similarity relation between snippets.

@ Global thesaurus, e.g., WordNet;

@ Local and context relationships between terms;
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Example: vivisimo screenshot

company | products | solutions | demos | partners | press

(vv Vivisimo Taguar [Search the Web ¥

» Advanced Search » Help! » Tell Us What You Think!

Clustered Results Top 194 results retrieved for the query jaguar (Details) &
» l2Quar (132 New! Results now open in the full browser window by default. Click on the [frame] links next to the titles to get the
» Jaguar Cars (25) old behavior and an updated toolbar with exciting new features.
» Club (15)
» Parts, Auto 15) Apple Mac OS X 10.2 Jaguar [new windew] [frame] [praview] k &
Find great prices on Apple Mac OS X 10.2 Jaguar at CNET Shopper.com, a comprehensive pricing gu\de that W|H
» Caty14) help you find the latest tech products at great prices. - shopper.cnet.com
» Mac (12)
» Type (10 Get a Free Jaguar Quote [new window] [frame] [preview] Sp Link
» Performance (5 Get a free Jaguar quote from a local dealer with Yahoo! Autos. Choose a vehicle, enter your contact mfn and a Inca\
dealer will contact you with a great no-haggle price. - autos yahoo com - <o
» Classic (5)
» Quote, Dealer (17} 1. Jaguar Cars [new win [frama] [previaw]
» Panthera onca (s} URL: WWW. uarcars.cor d
Sources:

2. www.jaguarracing.com [»
Find in clusters: URL: WWW_jaguar-racing.com

Enter Keywords (o] Seurces:

3. Apple - Mac OS5 X [new wi
Learn about the new OS X Server, designed for the Internet, digital media and workgroup management. Download a
technical factsheet. ... Mac OS X version 10.2 Jaguar contains over 150 new features and provides significant

enhancements to its modem, UNIX-based

URL: www.apple.com/macosx -
Sources:

] [frame] [preview]

[Frame] [preview]

Nguyen Hung Son versity of Warsaw, RS in ML & DM Milan, 26 July 2016 54 / 65



Rough set approach to snippet clustering

@ Approximation of similarity relation on the set of terms = tolerance
rough set model (TRSM);

@ Enriching document representation using upper approximation of
snippets in TRSM;

© Clustering the enriched representations of snippets
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Tolerance Rough set Clustering algorithm:

@ documents preprocessing: In TRC, the following standard
preprocessing steps are performed on snippets: text cleansing, text
stemming, and Stop-words elimination.

@ documents representation building: two main procedures index
term selection and term weighting are performed.

© tolerance class generation: see next slide

Q clustering: k-mean clustering on the enriched document
representations; use nearest-neighbor to assign unclassified documents
to cluster.

O cluster labeling: phrase labeling.

documents Hecurments tolerance class cluster
preprocessing r:> repgiﬁg?ggtlon J> generation r.> clustering r:> labelling &
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Step 3: Tolerance class generation

M

=

documen-term
frequency matrix

M

term tolerance
matrix

Nguyen Hung Son (University of Warsaw,

RS in ML & DM

M

=z

term occurrence
binary matrix

M

term co-occurrence
matrix
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Step 4: Clustering

The set of index terms Ry, representing cluster C}, is constructed so that:
@ each document d; in C} share some or many terms with Ry,
@ terms in R occurs in most documents in CY,
@ terms in Ry needs not to be contained by every document in Cj,

The weighting for terms ¢; in Ry, is calculated as an averaged weight of all
occurrences in documents of C:

Zd-eC Wij
. R — i k
w;(Ry) {d: € Cy, [ t; € di}]
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Outline

© Rough sets and Text mining

@ Extended TRSM
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Extended TRSM using thesaurus

The extended TRSM is an approximation space R¢ = (T'U C, Iy o, v, P),
where C' is the mentioned above set of concepts.

o for each term ¢; € C' the set Iy o(c;) contains « top terms from the
bag of terms of ¢; calculated from the textual descriptions of concepts.

o for each term ¢; € T' the set Iy o(t;) = Ip(t;) U Cy(t;) consists of the
tolerance class of ¢; from the standard TRSM and the set of concepts,
whose description contains the term ¢; as the one of the top o terms.

In extended TRSM, the document d; € D is represented by
Ur(di) = Ur(d;)) U{cj € C | v(Ig.alcj),di) > 0} = | Toalts)

t; €d;
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O ts
t
ds Ote
C1
C2
Challenge:
How to define the weighting schema? J
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Example: Explicit Semantic Analysis

Building Sermantic | nterpreter

word

::> Building weighted ::> word, | —0—0—0—0

imneerted index S
Weiighted lisg
[ of poncaps
Wikipedia akiorn el
word, anicles)
W eighted
inwerted index
Using Semantic | riter preter
WV actor
Taxt, Semantic COMparison
1 niter pr ater Relatedness
estimati on
Texty
\_Y_.'
W aighted »
vector of N
Wikipedia
CONCepts
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Semantic indexing of Medical documents

termy | term, termm concepty | concept; concepty
docy Wan Wol WoMm termy Coo Col CoK
doc; Wi term; Clo
Wij Cik
doex | wwno WNM termy CMo CMK
Representation of system data Representation of knowledge base
concepty | concept; conceptg
dogy oo Hoy ok
doc, uin
Uik
docy I55N0) HNK

New representation of system data

RS in ML & DM
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Semantic indexing of Medical documents

= PubMed (
Med BMC

MM conal || () Bigtted Centl

[Search M Journal List

o Top 20 concepts:

Journal List > BMC Musculoskelet Disord > v.10; 2009 ”LOW Back Pain i , “Pa in Cll nics i
BMC Musculoskelet Disord. 2009; 10; 139, PMCID: PMC2780378 “ . . "
Publshed online 2009 November 13.doi; 10.1186/1471-2474-10-139 Pain Perce ptlon n Treatment Out-
Copyright ©2009 Reme et al; licensee BioMed Central Ltd. " “ ! n "
Expectations, perceptions, and physiotherapy predict come ’ SICk LeaVe ' O Utcome AS_

3 prolonged sick leave in subacute low back pain

sessment (Health Care)", “Controlled
, Clinical Trials as Topic", “Controlled
7R:‘srﬂ,‘arc::‘cnm;‘f\?gr:‘?am;::::utm:r Faculty :::sycho\ogy University of Bergen, Norway . . . “ I
o iy Clinical Trial", “Lost to Follow-Up

e “Rehabilitation, Vocational", “Pain

il E Reme: sie.reme@uib.no; Eli M Hagen: emhagen@online.no; Hege R Eriksen:

= Silie E Reme, 123 gl M Hagen, # and Hege R Eriksen®!?

e mbiiine Measurement", “Pain, Intractable"
Received February 25, 2009; Accepted November 13, 2000,
This is an Open Access article distributed under the terms of the Creative Commons Atribution License ! ‘C 0o h ort St u d | es L , ! ‘Ra n d om IZed C on-

(http:creativecommons orgficenses/by/2.0), which permits unresiricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

trolled Trials as Topic", “Neck Pain"

: “Sickness Impact Profile", “Chronic
T — Disease", “Comparative Effectiveness
3 Brief intervention programs for subacute low back pain (LBP) result in significant Research”, “Pain, Postoperative”

= reduction of sick leave compared to treatment as usual. Although effective, a
substantial proportion of the patients do not return to work. This study

investigates predictors of return to work in LBP patients participating in a
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Experiment results

@ Ontology: Medical Subject
Headings (MeSH)

o Data Set: Pubmed Central

o Expert tags: documents in 08
Pubmed Central are tagged
by human experts using 0s
headings and (optionally)
accompanying subheadings .
(qualifiers).

B Hierarchial Clustering
B Kmeans Clustering

W Lingo Clustering

5 SI0 SIOM sM

@ A single document is
typically tagged by 10 to 18
heading-subheading pairs.

Quality Measure: Rand Index $
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