Applications of Rough sets in Machine Learning and Data Mining

Part 1: Basic rough set methods for data analysis

Nguyen Hung Son
University of Warsaw, Poland

Milan, 26 July 2016

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results

4) Approximate Boolean Reasoning
5) Exercises

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology

2 Building blocks: basic rough set methods

- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results

4) Approximate Boolean Reasoning
5) Exercises

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an approximate reasoning problem.

Assume that there are

- Two agents A_{1} and A_{2};

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an approximate reasoning problem.

Assume that there are

- Two agents A_{1} and A_{2};
- They are talking about objects from a common universe \mathcal{U};

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an approximate reasoning problem.

Assume that there are

- Two agents A_{1} and $A_{2} ;$
- They are talking about objects from a common universe \mathcal{U};
- They use different languages \mathcal{L}_{1} and \mathcal{L}_{2};

The Need for Approximate Reasoning

Many tasks in data mining can be formulated as an approximate reasoning problem.

Assume that there are

- Two agents A_{1} and A_{2};
- They are talking about objects from a common universe \mathcal{U};
- They use different languages \mathcal{L}_{1} and \mathcal{L}_{2};
- Every formula ψ in \mathcal{L}_{1} (and \mathcal{L}_{2}) describes a set C_{ψ} of objects from \mathcal{U}.

Each agent, who wants to understand the other, should perform

- an approximation of concepts used by the other;
- an approximation of reasoning scheme, e.g., derivation laws;

Concept approximation problem

Each agent, who wants to understand the other, should perform

- an approximation of concepts used by the other;
- an approximation of reasoning scheme, e.g., derivation laws;

Classification Problem

Given

- A concept $C \subset \mathcal{U}$ used by teacher;
- A sample $U=U^{+} \cup U^{-}$, where
- $U^{+} \subset C$: positive examples;
- $U^{-} \subset \mathcal{U} \backslash C$: negative examples;
- Language \mathcal{L}_{2} used by learner;

Goal

build an approximation of C in terms of \mathcal{L}_{2}

- with simple description;
- with high quality of approximation;
- using efficient algorithm.

Clustering Problem

- Original definition: Division of data into groups of similar objects.

- In terms of approximate reasoning: Looking for approximation of a similarity relation (i.e., a concept of being similar):
- Universe: the set of pairs of objects;
- Teacher: a partial knowledge about similarity + optimization criteria;
- Learner: describes the similarity relation using available features;

Association Discovery

- Basket data analysis: looking for approximation of customer behavior in terms of association rules;
- Universe: the set of transactions;
- Teacher: hidden behaviors of individual customers;
- Learner: uses association rules to describe some common trends;

Association Discovery

- Basket data analysis: looking for approximation of customer behavior in terms of association rules;
- Universe: the set of transactions;
- Teacher: hidden behaviors of individual customers;
- Learner: uses association rules to describe some common trends;
- Time series data analysis:
- Universe: Sub-sequences obtained by windowing with all possible frame sizes.
- Teacher: the actual phenomenon behind the collection of timed measurements, e.g., stock market, earth movements.
- Learner: trends, variations, frequent episodes, extrapolation.

Rough set approach to Concept approximations

- Lower approximation - we are sure that these objects are in the set.
- Upper approximation - it is possible (likely, feasible) that these objects belong to our set (concept). They roughly belong to the set.

Generalized definition

Rough approximation of the concept C (induced by a sample X): any pair $\mathbb{P}=(\mathbf{L}, \mathbf{U})$ satisfying the following conditions:
(1) $\mathbf{L} \subseteq \mathbf{U} \subseteq \mathcal{U}$;
(2) \mathbf{L}, \mathbf{U} are subsets of \mathcal{U} expressible in the language \mathcal{L}_{2};
($\mathbf{L} \cap X \subseteq C \cap X \subseteq \mathbf{U} \cap X$;
(${ }^{(*)}$ the set \mathbf{L} is maximal (and \mathbf{U} is minimal) in the family of sets definable in \mathcal{L} satisfying (3).

Generalized definition

Rough approximation of the concept C (induced by a sample X): any pair $\mathbb{P}=(\mathbf{L}, \mathbf{U})$ satisfying the following conditions:
(1) $\mathbf{L} \subseteq \mathbf{U} \subseteq \mathcal{U}$;
(2) \mathbf{L}, \mathbf{U} are subsets of \mathcal{U} expressible in the language \mathcal{L}_{2};
© $\mathbf{L} \cap X \subseteq C \cap X \subseteq \mathbf{U} \cap X$;
(0) ${ }^{(*)}$ the set \mathbf{L} is maximal (and \mathbf{U} is minimal) in the family of sets definable in \mathcal{L} satisfying (3).

Rough membership function of concept C :

any function $f: \mathcal{U} \rightarrow[0,1]$ such that the pair $\left(\mathbf{L}_{f}, \mathbf{U}_{f}\right)$, where

- $\mathbf{L}_{f}=\{x \in \mathcal{U}: f(x)=1\}$ and
- $\mathbf{U}_{f}=\{x \in \mathcal{U}: f(x)>0\}$.
is a rough approximation of C (induced from sample U)

Example of Rough Set models

- Standard rough sets defined by attributes:
- lower and upper approximation of X by attributes from B are defined by indiscernible classes.
- Tolerance based rough sets:
- Using tolerance relation (also similarity relation) instead of indiscernibility relation.
- Variable Precision Rough Sets (VPRS)
- allowing some admissible level $0 \leq \beta \leq 1$ of classification inaccuracy.
- Generalized approximation space

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology

2 Building blocks: basic rough set methods

- Decision rule extraction
- Discretization

3) Different types of reducts

- Core, Reductive and Redundant attributes
- Complexity Results

4 Approximate Boolean Reasoning
5) Exercises

Boolean algebra in Computer Science

George Boole (1815-1864)

- George Boole was truly one of the founders of computer science;
- Boolean algebra was an attempt to use algebraic techniques to deal with expressions in the propositional calculus.
- Boolean algebras find many applications in electronic and computer design.
- They were first applied to switching by Claude Shannon in the 20th century.
- Boolean Algebra is also a convenient notation for representing Boolean functions.

Algebraic approach to problem solving

> Word Problem:
> Madison has a pocket full of nickels and dimes.
> - She has 4 more dimes than nickels.
> - The total value of the dimes and nickels is $\$ 1.15$.

> How many dimes and nickels does she have?

Algebraic approach to problem solving

- Problem modeling:

Word Problem:

Madison has a pocket full of nickels and dimes.

- She has 4 more dimes than nickels.
- The total value of the dimes and nickels is $\$ 1.15$.
How many dimes and nickels does she have?
$N=$ number of nickels
$D=$ number of dimes
$D=N+4$
$10 D+5 N=115$

Algebraic approach to problem solving

- Problem modeling:

Word Problem:

Madison has a pocket full of nickels and dimes.

- She has 4 more dimes than nickels.
- The total value of the dimes and nickels is $\$ 1.15$.
How many dimes and nickels does she have?

$$
\begin{gathered}
N=\text { number of nickels } \\
D=\text { number of dimes } \\
D=N+4 \\
10 D+5 N=115
\end{gathered}
$$

- Solving algebraic problem:

$$
\ldots \Rightarrow D=9 ; N=5
$$

Algebraic approach to problem solving

- Problem modeling:

Word Problem:

Madison has a pocket full of nickels and dimes.

- She has 4 more dimes than nickels.
- The total value of the dimes and nickels is $\$ 1.15$.
How many dimes and nickels does she have?

$$
\begin{gathered}
N=\text { number of nickels } \\
D=\text { number of dimes } \\
D=N+4 \\
10 D+5 N=115
\end{gathered}
$$

- Solving algebraic problem:

$$
\ldots \Rightarrow D=9 ; N=5
$$

- Hura: 9 dimes and 5 nickels!

Boolean Algebra:

a tuple

$$
\mathcal{B}=(B,+, \cdot, 0,1)
$$

satisfying following axioms:

- Commutative laws:

$$
\begin{aligned}
& (a+b)=(b+a) \text { and } \\
& (a \cdot b)=(b \cdot a)
\end{aligned}
$$

- Distributive laws:

$$
\begin{aligned}
& a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
& a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

- Identity elements:

$$
a+0=a \text { and } a \cdot 1=a
$$

- Complementary:

$$
a+\bar{a}=1 \text { and } a \cdot \bar{a}=0
$$

$$
\mathcal{B}_{2}=(\{0,1\},+, \cdot, 0,1)
$$

is the smallest, but the most important, model of general Boolean Algebra.

x	y	$x+y$	$x \cdot y$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

x	$\neg x$
0	1
1	0

Applications:

- circuit design;
- propositional calculus;

Boolean Algebra:

a tuple

$$
\mathcal{B}=(B,+, \cdot, 0,1)
$$

satisfying following axioms:

- Commutative laws:

$$
\begin{aligned}
& (a+b)=(b+a) \text { and } \\
& (a \cdot b)=(b \cdot a)
\end{aligned}
$$

- Distributive laws:

$$
\begin{aligned}
& a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
& a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

- Identity elements:

$$
a+0=a \text { and } a \cdot 1=a
$$

- Complementary:

$$
a+\bar{a}=1 \text { and } a \cdot \bar{a}=0
$$

Binary Boolean algebra

$$
\mathcal{B}_{2}=(\{0,1\},+, \cdot, 0,1)
$$

is the smallest, but the most important, model of general Boolean Algebra.

x	y	$x+y$	$x \cdot y$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

x	$\neg x$
0	1
1	0

Applications:

- circuit design;
- propositional calculus;

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$
- $\phi_{3}=x y+x z+y z$

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$
- $\phi_{3}=x y+x z+y z$
- $x y \bar{z}$ is an implicant

x	y	z	f
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

Boolean function

- Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called a Boolean function;
- An implicant of function f is a term $t=x_{1} \ldots x_{m} \overline{y_{1}} \ldots \overline{y_{k}}$ such that

$$
\forall_{x_{1}, \ldots, x_{n}} t\left(x_{1}, \ldots, x_{n}\right)=1 \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=1
$$

- Prime implicant: an implicant that ceases to be so if any of its literal is removed.

A Boolean function can be represented by many Boolean formulas;

- $\phi_{1}=x y \bar{z}+x \bar{y} z+\bar{x} y z+x y z$
- $\phi_{2}=(x+y+z)(\bar{x}+y+z)(x+\bar{y}+z)(x+y+\bar{z})$
- $\phi_{3}=x y+x z+y z$
- $x y \bar{z}$ is an implicant
- $x y$ is a prime implicant

Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime implicants: $\quad f=t_{1}+t_{2}+\ldots+t_{k}$

Boolean Reasoning Approach

Theorem (Blake Canonical Form)

A Boolean function can be represented as a disjunction of all of its prime implicants: $\quad f=t_{1}+t_{2}+\ldots+t_{k}$

Boolean Reasoning Schema

(1) Modeling: Represent the problem by a collection of Boolean equations
(2) Reduction: Condense the equations into a single Boolean equation

$$
f=0 \quad \text { or } \quad f=1
$$

(3) Development: Construct the Blake Canonical form, i.e., generate the prime implicants of f
(9) Reasoning: Apply a sequence of reasoning to solve the problem

Boolean Reasoning - Example

Problem:

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Boolean Reasoning - Example

Problem:

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Problem modeling:

$$
\begin{aligned}
& A \rightarrow \bar{B} \wedge C \leadsto A(B+\bar{C}) \quad=0 \\
& \ldots \nrightarrow B D(A C+\overline{A C})=0 \\
& \ldots \text {.. } \quad \bar{B} C(A+\bar{D}) \quad=0
\end{aligned}
$$

Boolean Reasoning - Example

Problem:

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.
- After reduction:

$$
\begin{aligned}
& f=A(B+\bar{C})+B D(A C+ \\
& \overline{A C})+\bar{B} C(A+\bar{D})=0
\end{aligned}
$$

Problem modeling:

$$
\begin{aligned}
& A \rightarrow \bar{B} \wedge C \leadsto A(B+\bar{C}) \quad=0 \\
& \ldots \text {.. } B D(A C+\overline{A C})=0 \\
& \ldots \leadsto \bar{B} C(A+\bar{D}) \quad=0
\end{aligned}
$$

Boolean Reasoning - Example

Problem:

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.
- After reduction:

$$
\begin{aligned}
& \frac{f=A(B+\bar{C})+B D(A C+}{\overline{A C})+\bar{B} C(A+\bar{D})=0}
\end{aligned}
$$

- Blake Canonical form:

$$
f=B \bar{C} D+\bar{B} C \bar{D}+A=0
$$

Problem modeling:

$$
\begin{aligned}
& A \rightarrow \bar{B} \wedge C \leadsto A(B+\bar{C}) \quad=0 \\
& \ldots \leadsto B D(A C+\overline{A C})=0 \\
& \ldots \leadsto \bar{B} C(A+\bar{D}) \quad=0
\end{aligned}
$$

Boolean Reasoning - Example

Problem:

A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

Problem modeling:

$$
\begin{aligned}
A \rightarrow \bar{B} \wedge C \leftrightarrow M \rightarrow A(B+\bar{C}) & =0 \\
\ldots \text { a } B D(A C+\overline{A C}) & =0 \\
\ldots \text { מ } \bar{B} C(A+\bar{D}) & =0
\end{aligned}
$$

- After reduction:

$$
\begin{aligned}
& f=A(B+\bar{C})+B D(A C+ \\
& \overline{A C})+\bar{B} C(A+\bar{D})=0
\end{aligned}
$$

- Blake Canonical form: $f=B \bar{C} D+\bar{B} C \bar{D}+A=0$
- Facts:

$$
\begin{aligned}
B D & \longrightarrow C \\
C & \longrightarrow B+D \\
A & \longrightarrow 0
\end{aligned}
$$

Boolean Reasoning - Example

Problem:

A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or

C (but not both) will go

- If C goes and B does not, then

D will go but A will not.
Problem modeling:

$$
\begin{aligned}
& A \rightarrow \bar{B} \wedge C \text { An } A(B+\bar{C}) \quad=0 \\
& \ldots \nrightarrow B D(A C+\overline{A C})=0 \\
& \ldots \text {.. } \quad \bar{B} C(A+\bar{D}) \quad 0
\end{aligned}
$$

- After reduction:

$$
\begin{aligned}
& f=A(B+\bar{C})+B D(A C+ \\
& \overline{A C})+\bar{B} C(A+\bar{D})=0
\end{aligned}
$$

- Blake Canonical form: $f=B \bar{C} D+\bar{B} C \bar{D}+A=0$
- Facts:

$$
\begin{aligned}
B D & \longrightarrow C \\
C & \longrightarrow B+D \\
A & \longrightarrow 0
\end{aligned}
$$

- Reasoning: (theorem proving) e.g., show that
"C cannot go alone."

Boolean reasoning for decision problems

Planing (scheduling) problem P

Boolean reasoning for decision problems

Planing (scheduling) problem P

- SAT: whether an equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=1
$$

has a solution?

- SAT is the first problem which has been proved to be NP-complete (the Cook's theorem).

Boolean reasoning for decision problems

Planing (scheduling) problem P

- SAT: whether an equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=1
$$

has a solution?

- SAT is the first problem which has been proved to be NP-complete (the Cook's theorem).
- E.g., scheduling problem may be solved by SAT-solver.

Boolean reasoning for optimization problems

Boolean reasoning for optimization problems

Boolean reasoning for optimization problems

Heuristics for minimal prime implicants

Example

$f=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)\left(x_{1}+x_{3}+x_{5}\right)\left(x_{1}+x_{5}\right)\left(x_{4}+x_{6}\right)$
The prime implicant can be treated as a set covering problem.
(1) Greedy algorithm: In each step, select the variable that most frequently occurs within clauses
(3) Linear programming: Convert the given function into a system of linear inequations and applying the Integer Linear Programming (ILP) approach to this system.
(0) Evolutionary algorithms:

The search space consists of all subsets of variables the cost function for a subset X of variables is defined by (1) the number of clauses that are uncovered by X, and (2) the size of X,

Boolean Reasoning Approach to Rough sets

- Reduct calculation;
- Decision rule generation;
- Real value attribute discretization;
- Symbolic value grouping;
- Hyperplanes and new direction creation;

Reduction

- Do we need all attributes?
- Do we need to store the entire data?
- Is it possible to avoid a costly test?

Reducts are subsets of attributes that preserve the same amount of information. They are, however, (NP-)hard to find.

- Efficient and robust heuristics exist for reduct construction task.
- Searching for reducts may be done efficiently with the use of evolutionary computation.
- Overfitting can be avoided by considering several reducts, pruning rules and lessening discernibility constraints.

Data reduction in Rough sets

What is a reduct?

Reducts are minimal subsets of attributes which contain a necessary portion of information of the set of all attributes.

- Given an information system $\mathbb{S}=(U, A)$ and a monotone evaluation function

$$
\mu_{\mathbb{S}}: \mathcal{P}(A) \longrightarrow \Re^{+}
$$

- The set $B \subset A$ is called μ-reduct, if
- $\mu(B)=\mu(A)$,
- for any proper subset $B^{\prime} \subset B$ we have $\mu\left(B^{\prime}\right)<\mu(B)$;
- The set $B \subset A$ is called approximated reduct, if
- $\mu(B) \geq \mu(A)-\varepsilon$,
- for any proper subset ...

Example

- Consider the playing tennis decision table
- Let us try to predict the decision for last two objects
- RS methodology:
- Reduct calculation
- Rule calculation
- Matching
- Voting

$\mathbb{A} \mid a_{1}$	a_{2}	a_{3}	a_{4}	dec
ID\|outlook	temp.	hum.	windy	play
1 \|sunny	hot	high	FALSE	no
2 \|sunny	hot	high	TRUE	o
3 \|overcast	hot	high	FALSE	yes
4 \|rainy	mild	high	FALSE	yes
5 \|rainy	cool	normal	FALSE	yes
6 \|rainy	cool	normal	TRUE	по
7 \|overcast	cool	normal	TRUE	yes
8 \|sunny	mild	high	FALSE	no
9 \|sunny	cool	normal	FALSE	yes
10\|rainy	mild	normal	FALSE	yes
11\|sunny	mild	normal	TRUE	es
12 \|overcast	mild	high	TRUE	yes
13\|overcast	hot	normal	FALSE	?
14\|rainy	mild	high	TRUE	?

Example: Decision reduct

$\mathbb{A} \mid a_{1}$	a_{2}	a_{3}	a_{4}	dec
ID\|outlook	temp.	hum.	windy	play
1 \|sunny	hot	high	FALSE	no
2 \|sunny	hot	high	TRUE	no
3 \|overcast	hot	high	FALSE	yes
4 \|rainy	mild	high	FALSE	yes
5 \|rainy	cool	normal	FALSE	yes
6 \|rainy	cool	normal	TRUE \|	no
7 \|overcast	cool	normal	TRUE	yes
8 \|sunny	mild	high	FALSE	no
9 \|sunny	cool	normal	FALSE	yes
10\|rainy	mild	normal	FALSE\|	yes
11\|sunny	mild	normal	TRUE	yes
12 \|overcast	mild	high	TRUE	yes
13\|overcast	hot	normal	FALSE	?
14\|rainy	mild	high	TRUE	?

Methodology

(1) Discernibility matrix;
(2) Discernibility Boolean function
(3) Prime implicants \Longrightarrow reducts

Example: Decision reduct

$\mathbb{A} \mid a_{1}$	a_{2}	a_{3}	a_{4}	dec
ID\|outlook	temp.	hum.	windy	play
1 \|sunny	hot	high	FALSE	no
2 \|sunny	hot	high	TRUE	no
3 \|overcast	hot	high	FALSE	yes
4 \|rainy	mild	high	FALSE	yes
5 \|rainy	cool	normal	FALSE	yes
6 \|rainy	cool	normal	TRUE \|	no
7 \|overcast	cool	normal	TRUE	yes
8 \|sunny	mild	high	FALSE	no
9 \|sunny	cool	normal	FALSE	yes
10\|rainy	mild	normal	FALSE\|	yes
11\|sunny	mild	normal	TRUE	yes
12 \|overcast	mild	high	TRUE	yes
13\|overcast	hot	normal	FALSE	?
14\|rainy	mild	high	TRUE	?

Methodology

(1) Discernibility matrix;
(2) Discernibility Boolean function
(3) Prime implicants \Longrightarrow reducts

Example: Decision reduct

$\mathbb{A} \mid a_{1}$	a_{2}	a_{3}	a_{4}	dec
ID\|outlook	temp.	hum.	windy	play
1 \|sunny	hot	high	FALSE	no
2 \|sunny	hot	high	TRUE \|	no
3 \|overcast	hot	high	FALSE	yes
4 \|rainy	mild	high	FALSE	yes
5 \|rainy	cool	normal	FALSE	yes
6 \|rainy	cool	normal	TRUE \|	no
7 \|overcast	cool	normal	TRUE	yes
8 \|sunny	mild	high	FALSE	no
9 \|sunny	cool	normal	FALSE	yes
10\|rainy	mild	normal	FALSE	yes
11\|sunny	mild	normal	TRUE	yes
12 \|overcast	mild	high	TRUE	yes
13\|overcast	hot	normal	FALSE	?
14\|rainy	mild	high	TRUE \|	?

Methodology

(1) Discernibility matrix;
(2) Discernibility Boolean function

(3) Prime implicants \Longrightarrow reducts

Example: Decision reduct

M	1		2	6	18
3		1	a_{1}, a_{4}	$\begin{aligned} & \left\|a_{1}, a_{2},\right\| a_{1}, a_{2} \\ & a_{3}, a_{4} \end{aligned}$	
4		$, a_{2}$	$\begin{array}{ll} a_{1}, & a_{2}, \mid \\ a_{2}, & a_{3}, \mid a_{1} \\ a_{4} & a_{4} \end{array}$		
5		$\begin{aligned} & a_{1}, a_{2} \\ & a_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & a_{1}, a_{2}, \mid a_{4} \\ & a_{3}, a_{4} \end{aligned}$		$\begin{gathered} \mid a_{1}, a_{2}, \\ a_{3} \end{gathered}$
7		$\begin{aligned} & i_{1}, a_{2} \\ & i_{3}, a_{4} \end{aligned}$	$\begin{aligned} & a_{1}, a_{2}, \mid a_{1} \\ & a_{3} \end{aligned}$		$\begin{gathered} a_{1}, a_{2} \\ a_{3}, a_{4} \\ \hline \end{gathered}$
9		${ }_{2}, a_{3}$	$\begin{aligned} & a_{2}, a_{3}, \mid a_{1}, a_{4} \\ & a_{4} \end{aligned}$		a_{2}, a_{3}
10		$\begin{aligned} & z_{1}, a_{2} \\ & t_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & a_{1}, a_{2}, \mid a_{2}, a_{4} \\ & a_{3}, a_{4} \end{aligned}$		a_{1}, a_{3}
11	\qquad				
12		$\begin{aligned} & t_{1}, a_{2} \\ & l_{4} \\ & \hline \end{aligned}$	a_{1}, a_{2}	$\begin{gathered} \left\|a_{1}, a_{2},\right\| \\ a_{3} \end{gathered}$	$\mid a_{1}, a_{4}$

$$
\begin{aligned}
f= & \left(\alpha_{1}\right)\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1} \vee \alpha_{2}+\alpha_{3}+\alpha_{4}\right) \\
& \left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \\
& \left(\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{3}+\alpha_{4}\right)
\end{aligned}
$$

Example: Decision reduct

M	1		2	6	18
3		1	a_{1}, a_{4}	$\begin{aligned} & \left\|a_{1}, a_{2},\right\| a_{1}, a_{2} \\ & a_{3}, a_{4} \end{aligned}$	
4		$, a_{2}$	$\begin{array}{ll} a_{1}, & a_{2}, \mid \\ a_{2}, & a_{3}, \mid a_{1} \\ a_{4} & a_{4} \end{array}$		
5		$\begin{aligned} & a_{1}, a_{2} \\ & a_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & a_{1}, a_{2}, \mid a_{4} \\ & a_{3}, a_{4} \end{aligned}$		$\begin{gathered} \mid a_{1}, a_{2}, \\ a_{3} \end{gathered}$
7		$\begin{aligned} & i_{1}, a_{2} \\ & i_{3}, a_{4} \end{aligned}$	$\begin{aligned} & a_{1}, a_{2}, \mid a_{1} \\ & a_{3} \end{aligned}$		$\begin{gathered} a_{1}, a_{2} \\ a_{3}, a_{4} \\ \hline \end{gathered}$
9		${ }_{2}, a_{3}$	$\begin{aligned} & a_{2}, a_{3}, \mid a_{1}, a_{4} \\ & a_{4} \end{aligned}$		a_{2}, a_{3}
10		$\begin{aligned} & z_{1}, a_{2} \\ & t_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & a_{1}, a_{2}, \mid a_{2}, a_{4} \\ & a_{3}, a_{4} \end{aligned}$		a_{1}, a_{3}
11	\qquad				
12		$\begin{aligned} & t_{1}, a_{2} \\ & l_{4} \\ & \hline \end{aligned}$	a_{1}, a_{2}	$\begin{gathered} \left\|a_{1}, a_{2},\right\| \\ a_{3} \end{gathered}$	$\mid a_{1}, a_{4}$

$$
\begin{aligned}
f= & \left(\alpha_{1}\right)\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1} \vee \alpha_{2}+\alpha_{3}+\alpha_{4}\right) \\
& \left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \\
& \left(\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{3}+\alpha_{4}\right)
\end{aligned}
$$

- simplifying the function by absorbtion law (i.e. $p \wedge(p+q) \equiv p$):

$$
f=\left(\alpha_{1}\right)\left(\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
$$

Example: Decision reduct

\mathbb{M}	1	$\mid 2$	$\mid 6$	
3	a_{1}	$\left\|a_{1}, a_{4}\right\| a_{1}, a_{2}, \mid a_{1}, a_{2}$		
	a_{3}, a_{4}			

$$
\begin{aligned}
f= & \left(\alpha_{1}\right)\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1} \vee \alpha_{2}+\alpha_{3}+\alpha_{4}\right) \\
& \left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \\
& \left(\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{3}+\alpha_{4}\right)
\end{aligned}
$$

- simplifying the function by absorbtion law (i.e. $p \wedge(p+q) \equiv p$):

$$
f=\left(\alpha_{1}\right)\left(\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
$$

- Transformation from CNF to DNF: $f=\alpha_{1} \alpha_{4} \alpha_{2}+\alpha_{1} \alpha_{4} \alpha_{3}$

Example: Decision reduct

$$
\begin{aligned}
f= & \left(\alpha_{1}\right)\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1} \vee \alpha_{2}+\alpha_{3}+\alpha_{4}\right) \\
& \left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \\
& \left(\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{3}+\alpha_{4}\right)
\end{aligned}
$$

- simplifying the function by absorbtion law (i.e. $p \wedge(p+q) \equiv p$):

$$
f=\left(\alpha_{1}\right)\left(\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
$$

- Transformation from CNF to DNF: $f=\alpha_{1} \alpha_{4} \alpha_{2}+\alpha_{1} \alpha_{4} \alpha_{3}$
- Each component corresponds to a reduct:

$$
R_{1}=\left\{a_{1}, a_{2}, a_{4}\right\} \text { and } R_{2}=\left\{a_{1}, a_{3}, a_{4}\right\}
$$

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results

4. Approximate Boolean Reasoning
(5) Exercises

Boolean reasoning approach

- Reducts
- Decision rules
- Discretization
- Feature selection and Feature extraction

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results

4. Approximate Boolean Reasoning
(5) Exercises

Example: Decision Rule Extraction

\mathbb{M}	1	2	6	8
3	a_{1}	a_{1}, a_{4}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{1}, a_{2}
4	a_{1}, a_{2}	a_{1}, a_{2}, a_{4}	a_{2}, a_{3}, a_{4}	a_{1}
5	a_{1}, a_{2}, a_{3}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{4}	a_{1}, a_{2}, a_{3}
7	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{1}, a_{2}, a_{3}	a_{1}	$a_{1}, a_{2}, a_{3}, a_{4}$
9	a_{2}, a_{3}	a_{2}, a_{3}, a_{4}	a_{1}, a_{4}	a_{2}, a_{3}
10	a_{1}, a_{2}, a_{3}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{2}, a_{4}	a_{1}, a_{3}
11	a_{2}, a_{3}, a_{4}	a_{2}, a_{3}	a_{1}, a_{2}	a_{3}, a_{4}
12	a_{1}, a_{2}, a_{4}	a_{1}, a_{2}	a_{1}, a_{2}, a_{3}	a_{1}, a_{4}

$$
f_{u_{3}}=\left(\alpha_{1}\right)\left(\alpha_{1} \vee \alpha_{4}\right)\left(\alpha_{1} \vee \alpha_{2} \vee \alpha_{3} \vee \alpha_{4}\right)\left(\alpha_{1} \vee \alpha_{2}\right)=\alpha_{1}
$$

Decision rule:

$$
\left(a_{1}=\text { overcast }\right) \Longrightarrow d e c=\text { no }
$$

Example: Decision Rule Extraction

\mathbb{M}	1	2	6	8
3	a_{1}	a_{1}, a_{4}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{1}, a_{2}
4	a_{1}, a_{2}	a_{1}, a_{2}, a_{4}	a_{2}, a_{3}, a_{4}	a_{1}
5	a_{1}, a_{2}, a_{3}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{4}	a_{1}, a_{2}, a_{3}
7	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{1}, a_{2}, a_{3}	a_{1}	$a_{1}, a_{2}, a_{3}, a_{4}$
9	a_{2}, a_{3}	a_{2}, a_{3}, a_{4}	a_{1}, a_{4}	a_{2}, a_{3}
10	a_{1}, a_{2}, a_{3}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{2}, a_{4}	a_{1}, a_{3}
11	a_{2}, a_{3}, a_{4}	a_{2}, a_{3}	a_{1}, a_{2}	a_{3}, a_{4}
12	a_{1}, a_{2}, a_{4}	a_{1}, a_{2}	a_{1}, a_{2}, a_{3}	a_{1}, a_{4}

$$
\begin{aligned}
f_{u_{8}}= & \left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right) \\
& \left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{3}+\alpha_{4}\right)\left(\alpha_{1}+\alpha_{4}\right) \\
= & \alpha_{1}\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{3} \vee \alpha_{4}\right)=\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{2} \alpha_{4}
\end{aligned}
$$

Decision rules:

- $\left(a_{1}=\right.$ sunny $) \wedge\left(a_{3}=\right.$ high $) \Longrightarrow d e c=$ no
- $\left(a_{1}=\right.$ sunny $) \wedge\left(a_{2}=\right.$ mild $) \wedge\left(a_{4}=F A L S E\right) \Longrightarrow d e c=$ no

Example: all conssistent decision rules

Rid	Condition \Rightarrow Decision	supp.	
1	outlook(overcast) \Rightarrow	yes	4
2	humidity(normal) AND windy(FALSE) \Rightarrow	yes	4
3	outlook(sunny) AND humidity(high) \Rightarrow	no	3
4	outlook(rainy) AND windy(FALSE) \Rightarrow	yes	3
5	outlook(sunny) AND temp.(hot) \Rightarrow	no	2
6	outlook(rainy) AND windy(TRUE) \Rightarrow	no	2
7	outlook(sunny) AND humidity(normal) \Rightarrow	yes	2
8	temp.(cool) AND windy(FALSE) \Rightarrow	yes	2
9	temp.(mild) AND humidity(normal) \Rightarrow	yes	2
10	temp.(hot) AND windy(TRUE) \Rightarrow	no	1
11	outlook(sunny) AND temp.(mild) AND windy(FALSE) \Rightarrow	no	1
12	outlook(sunny) AND temp.(cool) \Rightarrow	yes	1
13	outlook(sunny) AND temp.(mild) AND windy(TRUE) \Rightarrow	yes	1
14	temp.(hot) AND humidity(normal) \Rightarrow	yes	1

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results

4 Approximate Boolean Reasoning
(5) Exercises

Discretization problem

Given a decision table $\mathbb{S}=(U, A \cup\{d\})$ where

$$
U=\left\{x_{1}, \ldots, x_{n}\right\} ; A=\left\{a_{1}, \ldots, a_{k}: U \rightarrow \Re\right\} \text { and } d: U \rightarrow\{1, \ldots, r(d)\}
$$

\mathbf{A}	a_{1}	a_{2}	a_{3}	d
u_{1}	1.0	2.0	3.0	0
u_{2}	2.0	5.0	5.0	1
u_{3}	3.0	7.0	1.0	2
u_{4}	3.0	6.0	1.0	1
u_{5}	4.0	6.0	3.0	0
u_{6}	5.0	6.0	5.0	1
u_{7}	6.0	1.0	8.0	2
u_{8}	7.0	8.0	8.0	2
u_{9}	7.0	1.0	1.0	0
u_{10}	8.0	1.0	1.0	0

Discretization problem

- A cut (a, c) on an attribute $a \in A$ discerns a pair of objects $x, y \in U$ if

$$
(a(x)-c)(a(y)-c)<0 .
$$

- A set of cuts \mathbf{C} is consistent with \mathbb{S} (or \mathbb{S}-consistent, for short) if and only if for any pair of objects $x, y \in U$ such that $\operatorname{dec}(x)=\operatorname{dec}(y)$, the following condition holds:

IF x, y are discernible by \mathbb{S} THEN x, y are discernible by \mathbf{C}.

- The consistent set of cuts \mathbf{C} is called irreducible iff \mathbf{Q} is not consistent for any proper subset $\mathbf{Q} \subset \mathbf{C}$.
- The consistent set of cuts \mathbf{C} is called it optimal iff $\operatorname{card}(C) \leq \operatorname{card}(Q)$ for any consistent set of cuts \mathbf{Q}.

Discretization problem

OpTIDISC: optimal discretization problem input: A decision table \mathbb{S}.
output: \mathbb{S}-optimal set of cuts.
The corresponding decision problem can be formulated as:
DISCSIzE: k-cuts discretization problem input: A decision table \mathbb{S} and an integer k.
question: Decide whether there exists a \mathbb{S}-irreducible set of cuts \mathbf{P} such that $\operatorname{card}(\mathbf{P})<k$.

Theorem

Computational complexity of discretization problems

- The problem DiscSize is NP-complete.
- The problem OptiDisc is NP-hard.

Boolean reasoning method for discretization

Example of a consistent set of cuts

\mathbb{S}	a	b	d
u_{1}	0.8	2	1
u_{2}	1	0.5	0
u_{3}	1.3	3	0
u_{4}	1.4	1	1
u_{5}	1.4	2	0
u_{6}	1.6	3	1
u_{7}	1.3	1	1

$$
\mathbf{C}=\{(a ; 0.9),(a ; 1.5),(b ; 0.75),(b ; 1.5)\}
$$

The discernibility formulas $\psi_{i, j}$ for different pairs $\left(u_{i}, u_{j}\right)$ of objects:

$$
\begin{array}{ll}
\psi_{2,1}=p_{1}^{a}+p_{1}^{b}+p_{2}^{b} ; & \psi_{2,4}=p_{2}^{a}+p_{3}^{a}+p_{1}^{b} ; \\
\psi_{2,6}=p_{2}^{a}+p_{3}^{a}+p_{4}^{a}+p_{1}^{b}+p_{2}^{b}+p_{3}^{b} ; & \psi_{2,7}=p_{2}^{a}+p_{1}^{b} ; \\
\psi_{3,1}=p_{1}^{a}+p_{2}^{a}+p_{3}^{b} ; & \psi_{3,4}=p_{2}^{a}+p_{2}^{b}+p_{3}^{b} ; \\
\psi_{3,6}=p_{3}^{a}+p_{4}^{a} ; & \psi_{3,7}=p_{2}^{b}+p_{3}^{b} ; \\
\psi_{5,1}=p_{1}^{a}+p_{2}^{a}+p_{3}^{a} ; & \psi_{5,4}=p_{2}^{b} ; \\
\psi_{5,6}=p_{4}^{a}+p_{3}^{b} ; & \psi_{5,7}=p_{3}^{a}+p_{2}^{b} .
\end{array}
$$

The discernibility formula $\Phi_{\mathbb{S}}$ in $C N F$ form is given by

$$
\begin{aligned}
\Phi_{\mathbb{S}}= & \left(p_{1}^{a}+p_{1}^{b}+p_{2}^{b}\right)\left(p_{1}^{a}+p_{2}^{a}+p_{3}^{b}\right)\left(p_{1}^{a}+p_{2}^{a}+p_{3}^{a}\right)\left(p_{2}^{a}+p_{3}^{a}+p_{1}^{b}\right) p_{2}^{b} \\
& \left(p_{2}^{a}+p_{2}^{b}+p_{3}^{b}\right)\left(p_{2}^{a}+p_{3}^{a}+p_{4}^{a}+p_{1}^{b}+p_{2}^{b}+p_{3}^{b}\right)\left(p_{3}^{a}+p_{4}^{a}\right)\left(p_{4}^{a}+p_{3}^{b}\right) \\
& \left(p_{2}^{a}+p_{1}^{b}\right)\left(p_{2}^{b}+p_{3}^{b}\right)\left(p_{3}^{a}+p_{2}^{b}\right) .
\end{aligned}
$$

Transforming the formula $\Phi_{\mathbb{S}}$ into its $D N F$ form we obtain four prime implicants:

$$
\Phi_{\mathbb{S}}=p_{2}^{a} p_{4}^{a} p_{2}^{b}+p_{2}^{a} p_{3}^{a} p_{2}^{b} p_{3}^{b}+p_{3}^{a} p_{1}^{b} p_{2}^{b} p_{3}^{b}+p_{1}^{a} p_{4}^{a} p_{1}^{b} p_{2}^{b} .
$$

Discretization by reduct calculation

\mathbb{S}^{*}	p_{1}^{a}	p_{2}^{a}	p_{3}^{a}	p_{4}^{a}	p_{1}^{b}	p_{2}^{b}	p_{3}^{b}	d^{*}
$\left(u_{1}, u_{2}\right)$	1	0	0	0	1	1	0	1
$\left(u_{1}, u_{3}\right)$	1	1	0	0	0	0	1	1
$\left(u_{1}, u_{5}\right)$	1	1	1	0	0	0	0	1
$\left(u_{4}, u_{2}\right)$	0	1	1	0	1	0	0	1
$\left(u_{4}, u_{3}\right)$	0	0	1	0	0	1	1	1
$\left(u_{4}, u_{5}\right)$	0	0	0	0	0	1	0	1
$\left(u_{6}, u_{2}\right)$	0	1	1	1	1	1	1	1
$\left(u_{6}, u_{3}\right)$	0	0	1	1	0	0	0	1
$\left(u_{6}, u_{5}\right)$	0	0	0	1	0	0	1	1
$\left(u_{7}, u_{2}\right)$	0	1	0	0	1	0	0	1
$\left(u_{7}, u_{3}\right)$	0	0	0	0	0	1	1	1
$\left(u_{7}, u_{5}\right)$	0	0	1	0	0	1	0	1
new	0	0	0	0	0	0	0	0

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results
(4) Approximate Boolean Reasoning
(5) Exercises

Information systems and Decision tables

	Diploma	Experience	French	Reference	Decision
x_{1}	MBA	Medium	Yes	Excellent	Accept
x_{2}	MBA	Low	Yes	Neutral	Reject
x_{3}	MCE	Low	Yes	Good	Reject
x_{4}	MSc	High	Yes	Neutral	Accept
x_{5}	MSc	Medium	Yes	Neutral	Reject
x_{6}	MSc	High	Yes	Excellent	Accept
x_{7}	MBA	High	No	Good	Accept
x_{8}	MCE	Low	No	Excellent	Reject

$$
\mathbb{D}=(U, A \cup\{d\})
$$

Indiscernibility Relation

- For any $B \subset A$:

$$
x I N D(B) y \Longleftrightarrow \inf _{B}(x)=\operatorname{inf_{B}}(y)
$$

$I N D(B$ is a equivalent relation.

- $[u]_{B}=\{v: u I N D(B) v\}$ - the equivalent class of $I N D(B)$.
- $B \subseteq A$ defines a partition of U :

$$
\left.U\right|_{B}=\left\{[u]_{B}: u \in U\right\}
$$

- For any subsets $P, Q \subseteq A$:

$$
\begin{align*}
&\left.U\right|_{P}=\left.U\right|_{Q} \tag{1}\\
&\left.\left.U\right|_{P} \preceq U\right|_{Q} \Longleftrightarrow \forall_{u \in U}[u]_{P}=[u]_{Q} \tag{2}\\
& \\
&]_{P} \subseteq[u]_{Q}
\end{align*}
$$

- Properties:

$$
\begin{align*}
& \left.\left.P \subseteq Q \Longrightarrow U\right|_{P} \preceq U\right|_{Q} \tag{3}\\
\forall_{u \in U} \quad & {[u]_{P \cup Q} }
\end{align*}=[u]_{P} \cap[u]_{Q}, ~ l
$$

What are reducts?

Reducts are minimal subsets of attributes which contain a necessary portion of information of the set of all attributes.

- Given an information system $\mathbb{S}=(U, A)$ and a monotone evaluation function

$$
\mu_{\mathbb{S}}: \mathcal{P}(A) \longrightarrow \Re^{+}
$$

- The set $B \subset A$ is called μ-reduct, if
- $\mu(B)=\mu(A)$,
- for any proper subset $B^{\prime} \subset B$ we have $\mu\left(B^{\prime}\right)<\mu(B)$;
- The set $B \subset A$ is called approximated reduct, if
- $\mu(B) \geq \mu(A)-\varepsilon$,
- for any proper subset ...

Definition (CORE and RED)

$$
\mu \text {-RED }=\text { set off all } \mu \text {-reducts; } \quad \mu \text {-CORE }=\bigcap_{B \in \mu-\operatorname{RED}} B
$$

Positive Region Based Reducts

- For any $B \subseteq A$ and $X \subseteq U$:

$$
\underline{B}(X)=\left\{u:[u]_{B} \subseteq X\right\} ; \quad \bar{B}(X)=\left\{u:[u]_{B} \cap X \neq \emptyset\right\}
$$

- Let $\mathbb{S}=(U, A \cup\{d e c\})$ be a decision table, let $B \subseteq A$, and let $\left.U\right|_{\text {dec }}=\left\{X_{1}, \ldots, X_{k}\right\}$:

$$
\operatorname{POS}_{B}(d e c)=\bigcup_{i=1}^{k} \underline{B}\left(X_{i}\right)
$$

- If $R \subseteq A$ satisfies
(1) $P O S_{R}(d e c)=P O S_{A}(d e c)$
(2) For any $a \in R: P O S_{R-\{a\}}(d e c) \neq P O S_{A}(d e c)$
then R is called the reduct of A based on positive region.
- $\operatorname{PRED}(A)=$ set of reducts based on positive region;
- This is the μ-reduct, where $\mu(B)=\mid P O S_{B}($ dec $) \mid$

Reducts

- Indiscernibility relation

$$
\begin{aligned}
(x, y) \in I N D(B) & \Longleftrightarrow \forall_{a \in A} a(x)=a(y) \\
(x, y) \in I N D_{\operatorname{dec}}(B) & \Longleftrightarrow \operatorname{dec}(x)=\operatorname{dec}(y) \vee \forall_{a \in A} a(x)=a(y)
\end{aligned}
$$

- A decision-relative reduct is a minimal set of attributes $R \subseteq A$ such that $I N D_{\text {dec }}(R)=I N D_{\text {dec }}(A)$.
- The set of all reducts is denoted by:

$$
\mathcal{R E D}(\mathbb{D})=\{R \subseteq A: R \text { is a reduct of } \mathbb{D}\}
$$

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results
(4) Approximate Boolean Reasoning
(5) Exercises

The importance of attributes

$$
\mathcal{R E D}(\mathbb{D})=\{R \subseteq A: R \text { is a reduct of } \mathbb{D}\}
$$

- Core attributes:

$$
\operatorname{CORE}(\mathbb{D})=\bigcap_{R \in \mathcal{R E D}(\mathbb{D})} R
$$

- An attribute $a \in A$ is called reduct attribute if it occurs in at least one of reducts

$$
R E A T(\mathbb{D})=\bigcup_{R \in \mathcal{R E D}(\mathbb{D})} R
$$

- The attribute is called redundant attribute if it is not a reductive attribute.
- An attribute b is redundant $\Leftrightarrow b \in A-R E A T$

The problem setting

It is obvious that for any reduct $R \in \mathcal{R E D}(\mathbb{D})$:

$$
C O R E(\mathbb{D}) \subseteq R \subseteq R E A T(\mathbb{D})
$$

The problem
For a given a decision table $\mathbb{S}=(U, A \cup\{d e c\})$ calculate

$$
\operatorname{CORE}(\mathbb{D})=\bigcap_{R \in \mathcal{R E D}(\mathbb{D})} R \quad \text { and } \quad R E A T(\mathbb{D})=\bigcup_{R \in \mathcal{R E D}(\mathbb{D})} R
$$

Example

	a_{1}	a_{2}	a_{3}	a_{4}	Decision
x_{1}	MBA	Medium	Yes	Excellent	Accept
x_{2}	MBA	Low	Yes	Neutral	Reject
x_{3}	MCE	Low	Yes	Good	Reject
x_{4}	MSc	High	Yes	Neutral	Accept
x_{5}	MSc	Medium	Yes	Neutral	Reject
x_{6}	MSc	High	Yes	Excellent	Accept
x_{7}	MBA	High	No	Good	Accept
x_{8}	MCE	Low	No	Excellent	Reject

In this example:

- the set of all reducts $\mathcal{R E D}(\mathbb{D})=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{4}\right\}\right\}$
- Thus

$$
\operatorname{CORE}(\mathbb{D})=\left\{a_{2}\right\} \quad \operatorname{REAT}(\mathbb{D})=\left\{a_{1}, a_{2}, a_{4}\right\}
$$

- the redundant attribute: a_{3}

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results

4) Approximate Boolean Reasoning
(5) Exercises

Discernibility matrix

	a_{1}	a_{2}	a_{3}	a_{4}	Decision
x_{1}	MBA	Medium	Yes	Excellent	Accept
x_{2}	MBA	Low	Yes	Neutral	Reject
x_{3}	MCE	Low	Yes	Good	Reject
x_{4}	MSc	High	Yes	Neutral	Accept
x_{5}	MSc	Medium	Yes	Neutral	Reject
x_{6}	MSc	High	Yes	Excellent	Accept
x_{7}	MBA	High	No	Good	Accept
x_{8}	MCE	Low	No	Excellent	Reject

	x_{1}	x_{4}	x_{6}	x_{7}
x_{2}	a_{2}, a_{4}	a_{1}, a_{2}	a_{1}, a_{2}, a_{4}	a_{2}, a_{3}, a_{4}
x_{3}	a_{1}, a_{2}, a_{4}	a_{1}, a_{2}, a_{4}	a_{1}, a_{2}, a_{4}	a_{1}, a_{2}, a_{3}
x_{5}	a_{1}, a_{4}	a_{2}	a_{2}, a_{4}	$a_{1}, a_{2}, a_{3}, a_{4}$
x_{8}	a_{1}, a_{2}, a_{3}	$a_{1}, a_{2}, a_{3}, a_{4}$	a_{1}, a_{2}, a_{3}	a_{1}, a_{2}, a_{4}

Boolean approach to reduct problem

- Boolean discernibility function:

$$
\begin{gathered}
\Delta_{\mathbb{D}}\left(a_{1}, \ldots, a_{4}\right)=\left(a_{2}+a_{4}\right)\left(a_{1}+a_{2}\right)\left(a_{1}+a_{2}+a_{4}\right)\left(a_{2}+a_{3}+a_{4}\right) \\
\left(a_{1}+a_{2}+a_{4}\right)\left(a_{1}+a_{2}+a_{4}\right)\left(a_{1}+a_{2}+a_{4}\right)\left(a_{1}+a_{2}+a_{3}\right) \\
\left(a_{1}+a_{4}\right)\left(a_{2}\right)\left(a_{2}+a_{4}\right)\left(a_{1}+a_{2}+a_{3}+a_{4}\right)\left(a_{1}+a_{2}+a_{3}\right) \\
\left(a_{1}+a_{2}+a_{3}+a_{4}\right)\left(a_{1}+a_{2}+a_{3}\right)\left(a_{1}+a_{2}+a_{4}\right)
\end{gathered}
$$

- In general: $R=\left\{a_{i_{1}}, \ldots a_{i_{j}}\right\}$ is a reduct in $\mathbb{D} \Leftrightarrow$ the monomial

$$
m_{R}=a_{i_{1}} \cdot \ldots \cdot a_{i_{j}}
$$

is a prime implicant of $\Delta_{\mathbb{D}}\left(a_{1}, \ldots, a_{k}\right)$

Theorem

For any attribute $a \in A, a$ is a core attribute if and only if a occurs in discernibility matrix as a singleton. As a consequence, the problem of searching for core attributes can be solved in polynomial time

Simplifying the discernibility function

- Absorption law:

$$
x+(x \cdot y)=x \quad x \cdot(x+y)=x
$$

- In our example: irreducible CNF of the discernibility function is as follows:

$$
\Delta_{\mathbb{D}}\left(a_{1}, \ldots, a_{4}\right)=a_{2} \cdot\left(a_{1}+a_{4}\right)
$$

- Complexity of searching for irreducible CNF: $O\left(n^{4} k\right)$ steps.

Calculation of reductive attribute

Theorem

For any decision table $\mathbb{D}=(U, A \cup\{d\})$. If

$$
\Delta_{\mathbb{D}}\left(a_{1}, \ldots, a_{k}\right)=\left(\sum_{a \in C_{1}} a\right) \cdot\left(\sum_{a \in C_{2}} a\right) \ldots\left(\sum_{a \in C_{m}} a\right)
$$

is the irreducible CNF of discernibility function $\Delta_{\mathbb{D}}\left(a_{1}, \ldots, a_{k}\right)$, then

$$
\begin{equation*}
R E A T(\mathbb{D})=\bigcup_{i=1}^{m} C_{i} \tag{5}
\end{equation*}
$$

Therefore the problem of calculation of all reductive attributes can be solved in $O\left(n^{4} k\right)$ steps.

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results
(4) Approximate Boolean Reasoning
(5) Exercises

Boolean Reasoning Approach to Rough sets

Complexity of encoding functions

Given a decision table with n objects and m attributes

Problem	Nr of variables	Nr of clauses
minimal reduct	$O(m)$	$O\left(n^{2}\right)$
decision rules	$O(n)$ functions	
	$O(m)$	$O(n)$
discretization	$O(m n)$	$O\left(n^{2}\right)$
grouping	$O\left(\sum_{a \in A} 2^{\mid V_{a \mid}}\right)$	$O\left(n^{2}\right)$
hyperplanes	$O\left(n^{m}\right)$	$O\left(n^{2}\right)$

Greedy algorithm:

time complexity of searching for the best variable:

$$
O(\# \text { variables } \times \# \text { clauses })
$$

Data Mining

The iterative and interactive process of discovering non-trivial, implicit, previously unknown and potentially useful (interesting) information or patterns from large databases.
(rici W. Frawley and G. Piatetsky-Shapiro and C. Matheus,(1992)

The science of extracting useful information from large data sets or databases.
D. Hand, H. Mannila, P. Smyth (2001)

Rough set algorithms based on BR reasoning:

Advantages:

- accuracy: high;
- interpretability: high;
- adjustability: high;
- etc.

Disadvantages:

- Complexity: high;
- Scalability: low;
- Usability of domain knowledge: weak;

Approximate Boolean Reasoning

Example: Decision reduct

The set R is a reduct if (1) it has nonempty intersection with each cell of the discernibility matrix and (2) it is minimal.

MD heuristics

- First we have to calculate the number of occurrences of each attributes in the discernibility matrix:

$$
\begin{array}{ll}
\operatorname{eval}\left(a_{1}\right)=\operatorname{disc}_{d e c}\left(a_{1}\right)=23 & \operatorname{eval}\left(a_{2}\right)=\operatorname{disc}_{d e c}\left(a_{2}\right)=23 \\
\operatorname{eval}\left(a_{3}\right)=\operatorname{disc}_{d e c}\left(a_{3}\right)=18 & \operatorname{eval}\left(a_{4}\right)=\operatorname{disc}_{d e c}\left(a_{4}\right)=16
\end{array}
$$

Thus a_{1} and a_{2} are the two most preferred attributes.

- Assume that we select a_{1}. Now we remove those cells that contain a_{1}. Only 9 cells remain, and the number of occurrences are:

$$
\begin{aligned}
& \operatorname{eval}\left(a_{2}\right)=\operatorname{disc}_{d e c}\left(a_{1}, a_{2}\right)-\operatorname{disc}_{d e c}\left(a_{1}\right)=7 \\
& \operatorname{eval}\left(a_{3}\right)=\operatorname{disc}_{d e c}\left(a_{1}, a_{3}\right)-\operatorname{disc}_{\text {dec }}\left(a_{1}\right)=7 \\
& \operatorname{eval}\left(a_{4}\right)=\operatorname{disc}_{d e c}\left(a_{1}, a_{4}\right)-\operatorname{disc_{dec}(a_{1})=6}
\end{aligned}
$$

- If this time we select a_{2}, then the are only 2 remaining cells, and, both are containing a_{4};
- Therefore, the greedy algorithm returns the set $\left\{a_{1}, a_{2}, a_{4}\right\}$ as a reduct of sufficiently small size.

Approximate Boolean Reasoning

MD heuristics for reducts without discernibility matrix?

$\mathbb{A} \mid a_{1}$	a_{2}	a_{3}	a_{4}	dec
ID\|outlook	temp.	hum.	windy	play
1 \|sunny	hot	high	FALSE\|	no
2 \|sunny	hot	high	TRUE	no
3 \|overcast	hot	high	FALSE\|	yes
4 \|rainy	mild	high	FALSE\|	yes
5 \|rainy	cool	normal	FALSE\|	yes
6 \|rainy	cool	normal	TRUE	no
7 \|overcast	cool	normal	TRUE	yes
8 \|sunny	mild	high	FALSE\|	no
9 \|sunny	cool	normal	FALSE\|	yes
10\|rainy	mild	normal	FALSE\|	yes
11\|sunny	mild	normal	TRUE	yes
12\|overcast	mild	high	TRUE	yes
13 \|overcast	hot	normal	FALSE\|	?
14\|rainy	mild	high	TRUE	?

(1) Number of occurences of attibutes in \mathbb{M};
(2) Number of occurences of a set of attibutes in \mathbb{M};

- Contingence table for a_{1} :

a_{1}	dec $=$ no	dec $=$ yes	total
sunny	3	2	5
overcast	0	3	3
rainy	1	3	4
total	4	8	12

$$
\operatorname{disc}_{\text {dec }}\left(a_{1}\right)=4 \cdot 8-3 \cdot 2-0 \cdot 3-1 \cdot 3=23
$$

- Contingence table for $\left\{a_{1}, a_{2}\right\}$:

$\left(a_{1}, a_{2}\right)$	no	yes	total
sunny, hot	2	0	2
sunny, mild	1	1	2
sunny, cool	0	1	1
overcast	0	3	3
rainy, mild	0	2	2
rainy, cool	1	1	2
total	4	8	12

$$
\operatorname{disc}_{d e c}\left(a_{1}, a_{2}\right)=4 \cdot 8-2 \cdot 0-\ldots=30
$$

Discernibility measure for discretization

- number of conflicts in a set of objects X : $\operatorname{conflict}(X)=\sum_{i<j} N_{i} N_{j}$
- the discernibility of a cut (a, c) :

$$
W(c)=\operatorname{conflict}(U)-\operatorname{conflict}\left(U_{L}\right)-\operatorname{conflict}\left(U_{R}\right)
$$

where $\left\{U_{L}, U_{R}\right\}$ is a partition of U defined by c.

Outline

(1) Introduction

- Rough Set Approach to Machine Learning and Data Mining
- Boolean Reasoning Methodology
(2) Building blocks: basic rough set methods
- Decision rule extraction
- Discretization
(3) Different types of reducts
- Core, Reductive and Redundant attributes
- Complexity Results
(4) Approximate Boolean Reasoning
(5) Exercises

Exercise 1: Digital Clock Font

Each digit in Digital Clock is made of a certain number of dashes, as shown in the image below. Each dash is displayed by a LED (light-emitting diode)
1234557890

Propose a decision table to store the information about those digits and use the rough set methods to solve the following problems:
(1) Assume that we want to switch off some LEDs to save the energy, but we still want to recognise the parity of the shown digit based on the remaining dashes. What is the minimal set of dashes you want to display?
(2) The same question for the case we want to recognise all digits.

Exercise 2: Core attribute

Propose an algorithm of searching for all core attributes that does not use the discernibility matrix and has time complexity of $O(k \cdot n \log n)$.

Exercise 3: Decision table with maximal number of reducts

We know that the number of reducts for any decision table \mathbb{S} with m attributes can not exceed the upper bound

$$
N(m)=\binom{m}{\lfloor m / 2\rfloor} .
$$

For any integer m construct a decision table with m attributes such that the number of reducts for this table equals to $N(m)$.

Applications of Rough sets in Machine Learning and Data Mining Part II: Rough Sets and Machine Learning

Nguyen Hung Son
University of Warsaw, Poland

Milan, 26 July 2016

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Rough set approach to ML and Data Mining

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Decision description language

Let A be a set of attributes. The description language for A is a triple

$$
\mathcal{L}(A)=(\mathbf{D},\{\vee, \wedge, \neg\}, \mathbf{F})
$$

where

- \mathbf{D} is a called the set of descriptors

$$
\mathbf{D}=\left\{(a=v): a \in A \text { and } v \in V a l_{a}\right\}
$$

- $\{\vee, \wedge, \neg\}$ is a set of standard Boolean operators
- \mathbf{F} is a set of boolean expressions defined on \mathbf{D} called formulas.
- For any $B \subseteq A$ we denote by $\left.\mathbf{D}\right|_{B}$ the set of descriptors restricted to B where $\left.\mathbf{D}\right|_{B}=\left\{(a=v): a \in B\right.$ and $\left.v \in V a l_{a}\right\}$ We also denote by $\left.\mathbf{F}\right|_{B}$ the set of formulas build from $\left.\mathbf{D}\right|_{B}$.

Semantics of formulas

The semantics

Let $\mathbb{S}=(U, A)$ be an information table describing a sample $U \subset \mathbb{X}$. The semantics of any formula $\phi \in \mathbf{F}$, denoted by $[[\phi]]_{\mathbb{S}}$, is defined by induction as follows:

$$
\begin{align*}
{[[(a=v)]]_{\mathbb{S}} } & =\{x \in U: a(x)=v\} \tag{1}\\
{\left[\left[\phi_{1} \vee \phi_{2}\right]\right]_{\mathbb{S}} } & =\left[\left[\phi_{1}\right]\right]_{\mathbb{S}} \cup\left[\left[\phi_{2}\right]\right]_{\mathbb{S}} \tag{2}\\
{\left[\left[\phi_{1} \wedge \phi_{2} 2\right]_{\mathbb{S}}\right.} & =\left[\left[\phi_{1}\right]\right]_{\mathbb{S}} \cap\left[\left[\phi_{2}\right]\right]_{\mathbb{S}} \tag{3}\\
{[[\neg \phi)]_{\mathbb{S}} } & =U \backslash[[\phi]]_{\mathbb{S}} \tag{4}
\end{align*}
$$

We associate with every formula ϕ the following numeric features:

- length $(\phi)=$ the number of descriptors that occur in ϕ;
- support $(\phi)=\left|[[\phi]]_{\mathbb{S}}\right|=$ the number of objects that match the formula;

Decision rules

Definition of Decision Rules

Let $\mathbb{S}=\{U, A \cup\{d e c\}\}$ be a decision table. Any implication of a form

$$
\phi \Rightarrow \delta
$$

where $\phi \in \mathbf{F}_{A}$ and $\delta \in \mathbf{F}_{\text {dec }}$, is called the decision rule in \mathbb{S}.
The formula ϕ is called the premise of the decision rule \mathbf{r} and δ is called the consequence of \mathbf{r}. We denote the premise and the consequence of the decision rule \mathbf{r} by $\operatorname{prev}(\mathbf{r})$ and $\operatorname{cons}(\mathbf{r})$, respectively.

Decision rules ...

Generic decision rule

The decision rule \mathbf{r} whose the premise is a boolean monomial of descriptors, i.e.,

$$
\begin{equation*}
\mathbf{r} \equiv\left(a_{i_{1}}=v_{1}\right) \wedge \ldots \wedge\left(a_{i_{m}}=v_{m}\right) \Rightarrow(d e c=k) \tag{5}
\end{equation*}
$$

is called the generic decision rule.
We will consider generic decision rules only. For a simplification, we will talk about decision rules keeping in mind the generic ones.

Decision rules ...

Every decision rule \mathbf{r} of the form (5) can be characterized by the following featured:
length $(\mathbf{r})=$ the number of descriptor on the assumption of \mathbf{r} (i.e. the left hand side of implication)
$[\mathbf{r}]=$ the carrier of \mathbf{r}, i.e. the set of objects from U satisfying the assumption of \mathbf{r}
$\operatorname{support}(\mathbf{r})=$ the number of objects satisfying the assumption of \mathbf{r} : support $(\mathbf{r})=\operatorname{card}([\mathbf{r}])$
confidence $(\mathbf{r})=$ the confidence of \mathbf{r} : confidence $(\mathbf{r})=\frac{\left|[\mathbf{r}] \cap D E C_{k}\right|}{\| \mathbf{r}] \mid}$
The decision rule \mathbf{r} is called consistent with \mathbb{A} if

$$
\text { confidence }(\mathbf{r})=1
$$

Minimal rules

minimal consistent rules

For a given decision table $\mathbb{S}=(U, A \cup\{d e c\})$, the consistent rule:

$$
\mathbf{r}=\phi \Rightarrow(d e c=k)
$$

is called the minimal consistent decision rule if any decision rule $\phi^{\prime} \Rightarrow(d e c=k)$ where ϕ^{\prime} is a shortening of ϕ is not consistent with \mathbb{S}.

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

General approach

Any rule based classification method consists of three phases :
(1) Learning phase: generates a set of decision rules $R U L E S(\mathbb{A})$ from a given decision table \mathbb{A}.
(2) Rule selection phase: selects from $R U L E S(\mathbb{A})$ the set of such rules that can be supported by x. We denote this set by MatchRules (\mathbb{A}, x).
(3) Classifying phase: makes a decision for x using some voting algorithm for decision rules from MatchRules (\mathbb{A}, x) with respect to the following cases:
(1) If $\operatorname{MatchRules}(\mathbb{A}, x)$ is empty: the decision for x is " $U N K N O W N$ ", i.e. we have no idea how to classify x;
(2) If MatchRules (\mathbb{A}, x) consists of decision rules for the same decision class, say $k^{\text {th }}$ decision class: in this case $\operatorname{dec}(x)=k$;
(3) If MatchRules (\mathbb{A}, x) consists of decision rules for the different decision classes: in this case the decision for x should be made using some voting algorithm for decision rules from MatchRules (\mathbb{A}, x).

Rule filtering

- Every set of rules determines a rough approximation of the given concept via the conflict solver;
- The quality of rules is estimated by training data set - a finite sample of the whole universe;
- Conflict solving $=$ elimination of noisy and mistakes caused by "abnormal rules"!
- Not every rule, which is compatible with the training data set, is also compatible with the universe;
- It is better to eliminate abnormal rules according to the domain knowledge;

Filtering approach

supervised methods of filtering:

- according to rule support;
- according to the class coverage ratio of rules;
- according to rule length;
- by coverage algorithm: e.g., LEM2 method

Rule based classifier

Standard Rough set approach to rule based classifier

Rid		Condition $\quad \Rightarrow$	\Rightarrow Decision	supp.	match
1		outlook(overcast) \Rightarrow	\Rightarrow yes	4	0
2		humidity(normal) AND windy(FALSE) \Rightarrow	\Rightarrow yes	4	0
3		outlook(sunny) AND humidity(high) \Rightarrow	\Rightarrow no	-3	1
4		outlook(rainy) AND windy(FALSE) \Rightarrow	\Rightarrow yes	3	0
5		outlook(sunny) AND temp.(hot) \Rightarrow	\Rightarrow no	-2	1/2
6		outlook(rainy) AND windy(TRUE) \Rightarrow	\Rightarrow no	-2	1/2
7		outlook(sunny) AND humidity(normal) \Rightarrow	\Rightarrow yes	2	$1 / 2$
8		temp.(cool) AND windy (FALSE) \Rightarrow	\Rightarrow yes	2	0
9		temp.(mild) AND humidity(normal) \Rightarrow	\Rightarrow yes	2	1/2
10		temp.(hot) AND windy(TRUE) \Rightarrow	\Rightarrow no	-1	1/2
11	outlook(sunny)	AND temp.(mild) AND windy(FALSE) \Rightarrow	\Rightarrow no	-1	$2 / 3$
12		outlook(sunny) AND temp.(cool) \Rightarrow	\Rightarrow yes	1	$1 / 2$
13	outlook(sunny)	AND temp.(mild) AND windy (TRUE) \Rightarrow	\Rightarrow yes	1	1
14		temp.(hot) AND humidity(normal) \Rightarrow	\Rightarrow yes	1	0

The testing object
$x=\langle$ sunny, mild, high,$T R U E\rangle$
is classified by the decision function:

$$
\operatorname{Dec}(x)=S\left(\sum_{i=1}^{n} w_{i} \cdot \operatorname{dec}\left(R_{i}\right) \cdot \operatorname{Match}\left(x, R_{i}\right)\right)
$$

Classifier

Classifier

Result of a concept approximation method.
It is also called the classification algorithm featured by

- Input: information vector of an object;
- Output: whether an object belong to the concept;
- Parameters: are necessary for tuning the quality of classifier;

Rough classifier

Outside look: 4 possible answers

- YES (lower approximation)
- POSSIBLY YES (boundary region)
- NO
- DON'T KNOW

Inside:

- Feature selection/reduction;
- Feature extraction (discretization, value grouping, hyperplanes ...);
- Decision rule extraction;
- Data decomposition;
- Reasoning scheme approximation;

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Decision tree

Decision tree is a classification algorithm defined by a nested "IF-THEN-ELSE- of "CASE-SWITCH-" command.

Decision tree induction using Discernibility measure

MD-decision tree

- use the discernibility measure to evaluate the tests,
- binary decision using cuts for real value attributes and binary partitions for symbolic value attributes.

Soft decision trees

- advantages:

Decision tree induction using Discernibility measure

MD-decision tree

- use the discernibility measure to evaluate the tests,
- binary decision using cuts for real value attributes and binary partitions for symbolic value attributes.

Soft decision trees

- advantages:
- a form of pre-prunning technique that can prevent the overfitting problem.

Decision tree induction using Discernibility measure

MD-decision tree

- use the discernibility measure to evaluate the tests,
- binary decision using cuts for real value attributes and binary partitions for symbolic value attributes.

Soft decision trees

- advantages:
- a form of pre-prunning technique that can prevent the overfitting problem.
- Efficient method for soft cut calculation in large data sets.

Decision tree induction using Discernibility measure

MD-decision tree

- use the discernibility measure to evaluate the tests,
- binary decision using cuts for real value attributes and binary partitions for symbolic value attributes.

Soft decision trees

- advantages:
- a form of pre-prunning technique that can prevent the overfitting problem.
- Efficient method for soft cut calculation in large data sets.
- two types of soft trees:

Decision tree induction using Discernibility measure

MD-decision tree

- use the discernibility measure to evaluate the tests,
- binary decision using cuts for real value attributes and binary partitions for symbolic value attributes.

Soft decision trees

- advantages:
- a form of pre-prunning technique that can prevent the overfitting problem.
- Efficient method for soft cut calculation in large data sets.
- two types of soft trees:
- Rough decision tree

Decision tree induction using Discernibility measure

MD-decision tree

- use the discernibility measure to evaluate the tests,
- binary decision using cuts for real value attributes and binary partitions for symbolic value attributes.

Soft decision trees

- advantages:
- a form of pre-prunning technique that can prevent the overfitting problem.
- Efficient method for soft cut calculation in large data sets.
- two types of soft trees:
- Rough decision tree
- fuzzy decision tree

```
Recursive function build_tree \((U, \operatorname{dec}, \mathbf{T})\) :
    1: if \((\) stop_condition \((U, d e c)=\) true) then
    2: \(\quad\) T.etykieta \(=\) category \((U\), dec \()\);
    3: return;
    4: end if
    5: \(t:=\) choose_best_test \((U)\);
    6: T.test \(:=t\);
    7: for \(v \in R_{t}\) do
    8: \(\quad U_{v}:=\{x \in U: t(x)=v\} ;\)
    9: create new trees \(\mathbf{T}^{\prime}\);
10: \(\quad \mathbf{T} . \operatorname{branch}(v)=\mathbf{T}^{\prime}\);
11: build_tree \(\left(U_{v}\right.\), dec, \(\left.\mathbf{T}^{\prime}\right)\)
12: end for
```


Figure: The partition of the set of objects U defined by a binary test

With those notations the discernibility measure for binary tests can be also computed as follows:

$$
\begin{aligned}
\operatorname{Disc}(t, X) & =\operatorname{conflict}(X)-\operatorname{conflict}\left(X_{1}\right)-\operatorname{conflict}\left(X_{2}\right) \\
& =\frac{1}{2} \sum_{i \neq j} n_{i} n_{j}-\frac{1}{2} \sum_{i \neq j} l_{i} l_{j}-\frac{1}{2} \sum_{i \neq j} r_{i} r_{j}
\end{aligned}
$$

We can show that:

$$
\begin{aligned}
\operatorname{Disc}(t, X) & =\frac{1}{2}\left(N^{2}-\sum_{i=1}^{d} n_{i}^{2}\right)-\frac{1}{2}\left(L^{2}-\sum_{i=1}^{d} l_{i}^{2}\right)-\frac{1}{2}\left(R^{2}-\sum_{i=1}^{d} r_{i}^{2}\right) \\
& =\frac{1}{2}\left(N^{2}-L^{2}-R^{2}\right)-\frac{1}{2} \sum_{i=1}^{d}\left(n_{i}^{2}-l_{i}^{2}-r_{i}^{2}\right) \\
& =\frac{1}{2}\left[(L+R)^{2}-L^{2}-R^{2}\right]-\frac{1}{2} \sum_{i=1}^{d}\left[\left(l_{i}+r_{i}\right)^{2}-l_{i}^{2}-r_{i}^{2}\right] \\
& =L R-\sum_{i=1}^{d} l_{i} r_{i}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\operatorname{Disc}(t, X) & =L R-\sum_{i=1}^{d} l_{i} r_{i}=\sum_{i=1}^{d} l_{i} \sum_{i=1}^{d} r_{i}-\sum_{i=1}^{d} l_{i} r_{i} \\
& =\sum_{i \neq j} l_{i} r_{j}
\end{aligned}
$$

Discernibility measure

- number of conflicts in a set of objects X : $\operatorname{conflict}(X)=\sum_{i<j} N_{i} N_{j}$
- the discernibility of a cut (a, c) :

$$
W(c)=\operatorname{conflict}(U)-\operatorname{conflict}\left(U_{L}\right)-\operatorname{conflict}\left(U_{R}\right)
$$

where $\left\{U_{L}, U_{R}\right\}$ is a partition of U defined by c.

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Hardness of Approximation

Why the concept approximation problem is hard?

- Learnability of the target concept: some concepts are too complex and cannot be approximated directly from feature value vectors.
- PAC algorithms;
- Effective learnability of some concept spaces;
- VC dimension, ...
- Time and space complexity: Many problems related to optimal approximation are NP-hard.

Rough Classifier Defined by Rules

Rough Classifier Defined by Rules

Rough Classifier Defined by Rules

$$
\mu_{C}(x)= \begin{cases}\text { undetermined } & \text { if } \max \left(w_{y e s}, w_{n o}\right)<\omega \\ 0 & \text { if } w_{n o}-w_{y e s} \geq \theta \text { and } w_{n o}>\omega \\ 1 & \text { if } w_{\text {yes }}-w_{n o} \geq \theta \text { and } w_{y e s}>\omega \\ \frac{\theta+\left(w_{y e s}-w_{n o}\right)}{2 \theta} & \text { in other cases }\end{cases}
$$

Rough Classifier Defined by Rules

$$
\mu_{C}(x)= \begin{cases}\text { undetermined } & \text { if } \max \left(w_{y e s}, w_{n o}\right)<\omega \\ 0 & \text { if } w_{n o}-w_{y e s} \geq \theta \text { and } w_{r} \\ 1 & \text { if } w_{y e s}-w_{n o} \geq \theta \text { and } w_{2} \\ \frac{\theta+\left(w_{y e s}-w_{n o}\right)}{2 \theta} & \text { in other cases }\end{cases}
$$

Reasoning via Layered Learning

Reasoning via Layered Learning

Given:

- U : the set of examples;
- A : the set of attributes;
- H : concept decomposition diagram;
- $D=\operatorname{dec}_{C_{1}}, d e c_{C_{2}}, \ldots d e c_{C}$

Reasoning via Layered Learning

Given:

- U : the set of examples;
- A : the set of attributes;
- H : concept decomposition diagram;
- $D=\operatorname{dec}_{C_{1}}, d e c_{C_{2}}, \ldots d e c_{C}$

Goal: For each concept C in the hierarchy:

- construct a decision system \mathbb{S}_{C};
- induce a rough approximation of C, i.e., a rough membership functions for C : $\left[\mu_{C^{+}}(x), \mu_{C^{-}}(x)\right]$

Reasoning via Layered Learning

Given:

- U : the set of examples;
- A : the set of attributes;
- H : concept decomposition diagram;
- $D=\operatorname{dec}_{C_{1}}, d e c_{C_{2}}, \ldots d e c_{C}$

Goal: For each concept C in the hierarchy:

- construct a decision system \mathbb{S}_{C};
- induce a rough approximation of C, i.e., a rough membership functions for C : $\left[\mu_{C^{+}}(x), \mu_{C^{-}}(x)\right]$
System control: The system can be tuned by
- uncertainty parameters: θ;
- learning parameters for each level.

Reasoning via Layered Learning

Reasoning via Layered Learning

Given:

- U : the set of examples;
- A : the set of attributes;
- H : concept decomposition diagram;
- $D=\operatorname{dec}_{C_{1}}, d e c_{C_{2}}, \ldots d e c_{C}$

Reasoning via Layered Learning

Given:

- U : the set of examples;
- A : the set of attributes;
- H : concept decomposition diagram;
- $D=\operatorname{dec}_{C_{1}}, d e c_{C_{2}}, \ldots d e c_{C}$

Goal: For each concept C in the hierarchy:

- construct a decision system \mathbb{S}_{C};
- induce a rough approximation of C, i.e., a rough membership functions for C : $\left[\mu_{C^{+}}(x), \mu_{C^{-}}(x)\right]$

Reasoning via Layered Learning

Given:

- U : the set of examples;
- A : the set of attributes;
- H : concept decomposition diagram;
- $D=\operatorname{dec}_{C_{1}}, d e c_{C_{2}}, \ldots d e c_{C}$

Goal: For each concept C in the hierarchy:

- construct a decision system \mathbb{S}_{C};
- induce a rough approximation of C, i.e., a rough membership functions for C : $\left[\mu_{C^{+}}(x), \mu_{C^{-}}(x)\right]$
System control: The system can be tuned by
- uncertainty parameters: θ;
- learning parameters for each level.

Two-layered Approach to Concept Approximation

Typical KDD task:

Searching for patterns from data to describe a concept (sets of objects) or a relation.

Two-layered Approach to Concept Approximation

Typical KDD task:

Searching for patterns from data to describe a concept (sets of objects) or a relation.

Our proposition:
Decompose the concept approximation problem into:
(1) Searching for (rough) approximation of the relevant relation:

$$
R \longmapsto \widetilde{R}=(\underline{R}, \bar{R})
$$

(2) inducing the approximation of the target concept using the partial knowledge about the relation R.

Pairwise Space

Vit.A	Vit.C	Fruit	Vit.A	Vit.C	Fruit
1.0	0.6	Apple	2.0	0.7	Pear
1.75	0.4	Apple	2.0	1.1	Pear
1.3	0.1	Apple	1.9	0.95	Pear
0.8	0.2	Apple	2.0	0.95	Pear
1.1	0.7	Apple	2.3	1.2	Pear
1.3	0.6	Apple	2.5	1.15	Pear
0.9	0.5	Apple	2.7	1.0	Pear
1.6	0.6	Apple	2.9	1.1	Pear
1.4	0.15	Apple	2.8	0.9	Pear
1.0	0.1	Apple	3.0	1.05	Pear

Given

Decision table

$$
\mathbb{S}=(U, A \cup\{d e c\})
$$

$\delta_{a_{i}}$ - distance function on a_{i}

New decision table

- $U \times U$ - pairs of objects;
- $\delta_{a_{i}}(x, y)$-continue attributes;

$$
d(x, y)= \begin{cases}0 & \operatorname{dec}(x)=\operatorname{dec}(y) \\ 1 & \text { otherwise }\end{cases}
$$

Example of pairwise space

Illustration of some relations in the pairwise space

$$
\begin{aligned}
& \langle x, y\rangle \in \tau_{2}\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \Leftrightarrow \\
& \delta_{a_{i}}(x, y) \leq \varepsilon_{i} \text { for any } a_{i} \in A
\end{aligned}
$$

$$
\begin{aligned}
& \langle x, y\rangle \in \tau_{3}(w) \Leftrightarrow \\
& \delta_{a_{1}}(x, y)+\ldots+w_{k} \delta_{a_{k}}(x, y) \leq w
\end{aligned}
$$

Layered learning algorithm

1: for $l:=0$ to max_level do
2: \quad for (any concept C_{k} at the level l in H) do if $l=0$ then

$$
\mathbb{S}_{C_{k}}:=\left(U, A_{k}, d e c_{C_{k}}\right) ;
$$

else
6: $\quad A_{k}:=\bigcup O_{k_{i}}$;
7: $\quad \mathbb{S}_{C_{k}}:=\left(U, A_{k}, \operatorname{dec}_{C_{k}}\right)$;
8: \quad end if
9: \quad generate the rule set $\operatorname{RULES}\left(\mathbb{S}_{C_{k}}\right)$ for decision table $\mathbb{S}_{C_{k}}$;
10: generate the output vector $O_{k}=\left\{w_{\text {yes }}^{C_{k}}, w_{n o}^{C_{k}}\right\}$,
11: end for
12: end for

Example: Nursery data set

- Creator: Vladislav Rajkovic et al. (13 experts)
- Donors: Marko Bohanec (marko.bohanec@ijs.si)
Blaz Zupan (blaz.zupan@ijs.si)
- Date: June, 1997
- Number of Instances: 12960 (instances completely cover the attribute space)
- Number of Attributes: 8

Attributes

```
NURSERY
    EMPLOY
    . . parents
    . . has_nurs
    STRUCT_FINAN
    STRUCTURE
    . . . form
    . . . children
    . . housing
    . . finance
    SOC_HEALTH
    . . social
    . . health
    not_recom, recommend, very_recom, priority, spec_prior
    Employment of parents and child's nursery
    usual, pretentious, great_pret
    proper, less_proper, improper, critical, very_crit
    Family structure and financial standings
    Family structure
    complete, completed, incomplete, foster
    1, 2, 3, more
    convenient, less_conv, critical
    convenient, inconv
    Social and health picture of the family
    non-prob, slightly_prob, problematic
    recommended, priority, not_recom
```


Method:

(1) Use clustering algorithm to approximate intermediate concepts;
(2) Use rule based algorithm (RSES system) to approximate the target concept;

Method:

(1) Use clustering algorithm to approximate intermediate concepts;
(2) Use rule based algorithm (RSES system) to approximate the target concept;

Results: (60\% - training, 40\% - testing)

	original attributes only	using intermediate concepts
Accuracy	83.4	99.9%
Coverage	85.3%	100%
Nr of rules	634	42 (for the target concept) 92 (for intermediate concepts)

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Sunspots Recognition and Classification

Sunspots Recognition and Classification

Joirk USAF/NOA Solar Region Summary (MAR 30, 2001 24:00:00 UT)
HMER LOCATI LO AREA MCI LL TVN Mag TVPE
9387 NC8W92 216 OCEO Hsc 02 O1 Alphs 9389510 we3 is7 cos0 Bxs 06 C8 Bets 9390 N13was 1890050 Hzx 0201 Alphg 9393 N17w30 1542240 Fing 1863 Beta-Gommo-Dulto 9395 \$13W17 141 C050 Hsx O2 O2 Apho 9396 SO6WB5 2090140 Doo $10 \quad 05$ Beto 2397 SO9w06 130 M1B0 Eoo 1523 Beto-Garnme 9401 N21W11 1350230 Eki $13 \quad 37$ Beto-Gorma 9403 S13E06 118 0010 Evo O5 O2 Beto 9404 SOSE23 101 CO8O Cao 0407 Beto 9406 N26E41 0830170 Hox 0301 Apho

Road Situation Simulator

Road Situation Simulator

Road Situation Simulator

- Universe $=$ set of vectors $s(c, t)$, where
- c is a car;
- t is a time instant;
- Concept $=$ "Dangerous situation on the road";
- Evaluation measures:
- True positive rate;
- Coverage rate;

- Computation time;
- Rule sizes;

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

III-defined data

- The proteochemometrics can be seen as the search for possible combinations of ligand-receptor sites with optimal binding strength.
- The ability of the binding affinity prediction is crucial in this task
- the experimental method is very expensive both in terms of time and monetary value.
- This is the reason why data sets in this domain have small sizes.

Differential Calculus to Function Approximation

- ill-defined data: limited number of objects and large number of attributes;
- prediction of a real decision variable based on nominal attributes;
- the need for the knowledge about the real mechanisms behind the data;

No.	Combination	B-1	$1-4$	$4-6$	$6-E$	PB	PE	Binding affinity
1	A2B2C2D2a2b2	1	1	1	1	1	1	4.52526247
2	A1B2C1D1a2b2	-1	1	-1	-1	1	1	4.818066119
3	A1B2C2D1a2b2	-1	1	1	-1	1	1	5.036009902
\ldots								
\ldots								
39	A1B1C1D1a1b1	-1	-1	-1	-1	-1	-1	8.963821581
40	A1B1C1D1a2b1	-1	-1	-1	-1	1	-1	8.998482244

Existing solutions:

data and sizes	possible comb.	dec. domain
data set A : 40×6	64	$(0,10)$
data set B : 60×8	384	$(0,10)$
data set C : 130×55	$2^{41} 3^{11} 4^{2} 6$	$(0,10)$

- Regression tree, linear regression: ?
- Discretization of decision attribute: ?

Our propositions:

- 2-layered learning idea and decision rule techniques.
- we decompose this learning task into several subtasks:
(1) Approximate the preference relation between objects;
(2) Use approximate preference relation to solve other subtasks:
- learning ranking order,
- prediction of continuous decision value, or
- searching for optimal combination.
- ...

Two-layer method

Input

1. A decision table

\mathbb{S}	a_{1}	a_{2}	\ldots	$d e c$
u_{1}	1	-1	\ldots	4.23
u_{2}	1	1	\ldots	4.31
\ldots	\ldots	\ldots	\ldots	\ldots
u_{n}	-1	1	\ldots	8.92

2. Domain knowledge

Two-layer method

First level

- Create comparing table

	$\Delta_{a_{1}}$	$\Delta_{a_{2}}$	\ldots	change
u_{1}, u_{2}	$1 \rightarrow 1$	$-1 \rightarrow 1$	\ldots	\nearrow
u_{1}, u_{3}	\ldots	\ldots	\ldots	\searrow
\ldots	\ldots	\ldots	\ldots	\ldots

- Learn the preference relation, i.e., decision rules of form

$$
\Delta_{a_{2}}:-1 \rightarrow 1 \wedge a_{6}=1 \ldots \Longrightarrow \text { change }=\searrow
$$

2. Domain knowledge

Two-layer method

Input

1. A decision table

\mathbb{S}	a_{1}	a_{2}	\ldots	dec
u_{1}	1	-1	\ldots	4.23
u_{2}	1	1	\ldots	4.31
\ldots	\ldots	\ldots	\ldots	\ldots
u_{n}	-1	1	\ldots	8.92

2. Domain knowledge

Mathematical analogy

Real function analysis

Searching for maximum of a real function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$
(1) Get some information about its differential, e.g., gradient

$$
\nabla f=\left\langle\frac{d f}{d x_{1}}, \ldots, \frac{d f}{d x_{k}}\right\rangle
$$

(2) Discover the properties of $f\left(\mathrm{x}_{0}\right)$ from its differential, e.g.,
$\nabla f\left(\mathrm{x}_{0}\right)$ is the direction which promises maximum increase of f

Rough differential calculus

Mathematical analogy

Real function analysis

Searching for maximum of a real function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$
(1) Get some information about its differential, e.g., gradient

$$
\nabla f=\left\langle\frac{d f}{d x_{1}}, \ldots, \frac{d f}{d x_{k}}\right\rangle
$$

(2) Discover the properties of $f\left(\mathbf{x}_{0}\right)$ from its differential, e.g.,
$\nabla f\left(\mathrm{x}_{0}\right)$ is the direction which promises maximum increase of f

Rough differential calculus

- Assume \mathcal{F} is the right function for target concept, i.e.,

$$
C=\mathcal{F}\left(a_{1}, \ldots, a_{k}\right)
$$

Mathematical analogy

Real function analysis

Searching for maximum of a real function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$
(1) Get some information about its differential, e.g., gradient

$$
\nabla f=\left\langle\frac{d f}{d x_{1}}, \ldots, \frac{d f}{d x_{k}}\right\rangle
$$

(2) Discover the properties of $f\left(\mathbf{x}_{0}\right)$ from its differential, e.g.,
$\nabla f\left(\mathbf{x}_{0}\right)$ is the direction which promises maximum increase of f

Rough differential calculus

- Assume \mathcal{F} is the right function for target concept, i.e.,

$$
C=\mathcal{F}\left(a_{1}, \ldots, a_{k}\right)
$$

- Decision rules for the comparing table indicate:
How the changes on attributes effect on the changes of decision

Mathematical analogy

Real function analysis

Searching for maximum of a real function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$
(1) Get some information about its differential, e.g., gradient

$$
\nabla f=\left\langle\frac{d f}{d x_{1}}, \ldots, \frac{d f}{d x_{k}}\right\rangle
$$

(2) Discover the properties of $f\left(\mathbf{x}_{0}\right)$ from its differential, e.g.,
$\nabla f\left(\mathbf{x}_{0}\right)$ is the direction which promises maximum increase of f

Rough differential calculus

- Assume \mathcal{F} is the right function for target concept, i.e.,

$$
C=\mathcal{F}\left(a_{1}, \ldots, a_{k}\right)
$$

- Decision rules for the comparing table indicate:
How the changes on attributes effect on the changes of decision
- Such rules are discovered knowledge!

Mathematical analogy

Real function analysis

Searching for maximum of a real function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$
(1) Get some information about its differential, e.g., gradient

$$
\nabla f=\left\langle\frac{d f}{d x_{1}}, \ldots, \frac{d f}{d x_{k}}\right\rangle
$$

(2) Discover the properties of $f\left(\mathbf{x}_{0}\right)$ from its differential, e.g.,
$\nabla f\left(\mathbf{x}_{0}\right)$ is the direction which promises maximum increase of f

Rough differential calculus

- Assume \mathcal{F} is the right function for target concept, i.e.,

$$
C=\mathcal{F}\left(a_{1}, \ldots, a_{k}\right)
$$

- Decision rules for the comparing table indicate:
How the changes on attributes effect on the changes of decision
- Such rules are discovered knowledge!
- Meaning of rough set rules: short, certain, possible

Ranking

- Ranking learning can be understood as a problem of reconstruction of the correct ranking list of a set of objects;
- Let $\mathbb{S}=(U, A \cup\{d e c\})$ be a training data set and $\left(u_{1}, \ldots, u_{n}\right)$ is an ordered sequence of objects from U according to $d e c$, i.e.,

$$
\operatorname{dec}\left(u_{1}\right) \leq \operatorname{dec}\left(u_{2}\right) \leq \ldots \leq \operatorname{dec}\left(u_{n}\right)
$$

- The problem is to reconstruct the ranking list of objects from a test data set $\mathbb{S}^{\prime}=(V, A \cup\{d e c\})$ without using decision attribute dec.
- Our algorithm is based on the round robin tournament system which is carried out on the set of objects $U \cup V$.

Round robin algorithm for ranking

- Similarly to football leagues, every object from V - playing the tournament - obtains a total score summarizing its played matches.
- The objects from V are sorted with respect to their scores.
- The scoring method use $\pi_{\mathbf{L}, U}(x, y)$ as a referee:

$$
\operatorname{Score}(x)=\sum_{y \in U \cup V} w(y) \cdot \pi_{\mathbf{L}, U}(x, y)
$$

where $w(y)$ is a weighting parameter that measures the importance of the object y in our ranking algorithm. In our experiments:

$$
w(y)= \begin{cases}1 & \text { if } y \text { is a test object, i.e., } y \in V \\ 1+\frac{i}{n} & \text { if } y=u_{i} \in U\end{cases}
$$

- The algorithm can be applied for all the objects from $U \cup V$ to embed V into the ordered sequence $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$.

Evaluation of ranking algorithms

- There are several well known "compatibility tests" for this problem, e.g., Spearman R, Kendall τ, or Gamma coefficients.
- If the proper ranking list of V is denoted by $X=\left(x_{1}, x_{2} \ldots, x_{k}\right)$, then the second ranking list is a permutation of elements of V, and represented by $Y=\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(k)}\right)$
- The Spearman coefficient for a permutation $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ is computed by

$$
\begin{equation*}
R=1-\frac{6 \sum_{i=1}^{k}(\sigma(i)-i)^{2}}{k(k-1)(k+1)} \tag{7}
\end{equation*}
$$

- The Spearman coefficient takes values from $[-1 ; 1]$.

Further applications

- Prediction of continuous decision:
- Embed the object x into the sequence $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ by applying ranking algorithm for objects from $\{x\} \cup U$
- Assuming that x is embedded between u_{i} and u_{i+1}, then

$$
\operatorname{prediction}(x)=\frac{\operatorname{dec}\left(u_{i}\right)+\operatorname{dec}\left(u_{i+1}\right)}{2}
$$

is returned as a result of prediction.

Further applications

- Prediction of continuous decision:
- Embed the object x into the sequence $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ by applying ranking algorithm for objects from $\{x\} \cup U$
- Assuming that x is embedded between u_{i} and u_{i+1}, then

$$
\operatorname{prediction}(x)=\frac{\operatorname{dec}\left(u_{i}\right)+\operatorname{dec}\left(u_{i+1}\right)}{2}
$$

is returned as a result of prediction.

- Experiment design:

Point out the minimal number of changes that can improve the current combination;

Further applications

- Prediction of continuous decision:
- Embed the object x into the sequence $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ by applying ranking algorithm for objects from $\{x\} \cup U$
- Assuming that x is embedded between u_{i} and u_{i+1}, then

$$
\operatorname{prediction}(x)=\frac{\operatorname{dec}\left(u_{i}\right)+\operatorname{dec}\left(u_{i+1}\right)}{2}
$$

is returned as a result of prediction.

- Experiment design:

Point out the minimal number of changes that can improve the current combination;

- Optimization by dynamic learning;

The prediction algorithm

Let the training set of objects $U=\left\{u_{1}, \ldots u_{n}\right\}$ be given. The prediction algorithm computes the decision value of the test object $x \notin U$ as follows:

The algorithm:

Require: The set of labeled objects U and unlabeled object x; parameters: learning algorithm \mathbf{L};
Ensure: A predicted decision for x;
1: Embed the object x into the sequence $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ by applying ranking algorithm for objects from $\{x\} \cup U$ using \mathbf{L} and decision table for U;
2: Let us assume that x is embedded between u_{i} and u_{i+1};
3: Return prediction $(x)=\frac{\operatorname{dec}\left(u_{i}\right)+\operatorname{dec}\left(u_{i+1}\right)}{2}$ as a result of prediction.
The error rate on the set of testing objects V is measured by

$$
\operatorname{error}(V)=\frac{1}{\operatorname{card}(V)} \sum_{x \in V}|\operatorname{dec}(x)-\operatorname{prediction}(x)|
$$

Dynamic ranking

- The quality of ranking algorithm can be low due to the small number of objects.
- In many applications the number of training objects is increasing in time, but it is connected with certain cost of examination.
- We can treat a ranking problem as an optimization problem:
- get the highest value element (combination)
- require as low as possible the number of examples, i.e., to minimize the number of examinations and the cost of the whole process.

Dynamic ranking algorithm

The dynamic ranking algorithm

Require: The set of labeled objects U and unlabeled objects V;
parameters: learning algorithm \mathbf{L} and positive integer request_size;
Ensure: A list of objects to be requested; Ranking of elements in the U_{2}
in the RankList;
: $U_{1} \leftarrow U ; U_{2} \leftarrow V$;
RankList $\leftarrow[] ; \quad / /$ the empty list
while not STOP CONDITION do
4: \quad Rank elements of U_{2} by using \mathbf{L} and decision table for U_{1}; Let this ranking list be: $\left(x_{1}, x_{2}, \ldots\right)$;
5: for $i=1$ to request_size do
6: RankList.append $\left(x_{i}\right)$
7: $\quad U_{1} \leftarrow U_{1} \cup\left\{x_{i}\right\} ; \quad U_{2} \leftarrow U_{2} \backslash\left\{x_{i}\right\} ;$
8: end for
9: end while

Experiments - Data sets

- 4 tables:

data and sizes	possible comb.	dec. domain
data set A : 40×6	64	$(0,10)$
data set B : 60×8	384	$(0,10)$
data set C : 130×55	$2^{41} 3^{11} 4^{2} 6$	$(0,10)$
Artificial $: 64 \times 6$	64	$(5.7,33)$

Artificial decision:
$d e c=e^{a_{1} a_{2}}+\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\right) * a_{6} / a_{3}+\sin \left(a_{4}\right)+\ln \left(a_{5}\right)+$ noise

- 6 learning algorithms
- 7-fold cross validation

Results for real data

Learning algorithm	Table A		Table B		Table C	
acc.(\%)	pred.error	acc.(\%)	pred.error	acc.(\%)	pred.error	
rough set	79.26	0.4843	81.63	0.3815	75.57	0.4328
naive bayes	72.7	0.849	74.22	0.5355	56.89	0.8925
nnge	76.75	0.5170	80.54	0.345	-	-
boost nnge	80.67	0.4383	83.76	0.3779	-	-
j48	75.8	0.6981	81.29	0.3821	76.2	0.4958
boost j48	80.17	0.4935	85.23	0.318	-	-

Results for artificial data

Learning	Ranking		Prediction		Dynamic Ranking	
algorithm	Spearman	acc.(\%)	Pearson	pred.error	pos.	Spearman
Decision Rules	0.8930	83.28%	0.9653	1.4547	1.3	0.9501
Naive Bayes	0.7984	78.52%	0.5948	3.8336	1.3	0.8540
Nnge	0.7770	77.19%	0.9178	1.8245	2.5	0.9165
Boosting Nnge	0.8318	80.27%	0.9184	1.6244	1.6	0.9433
C45	0.7159	75.7%	0.8372	2.2108	2.7	0.8736
Boosting C45	0.8536	80.74%	0.9661	1.3483	1.6	0.9475

Outline

(1) Rule-base classifiers

- Rule-based classifier
(2) Rough sets and decision tree
- MD-heuristics and decision tree
(3) Concept Approximation with Layered learning
- General idea
- Applications
- Differential Approach to Continuous Decision
(4) Exercises

Exercise 1: decision rules vs. decision tree

Each path of decision tree can be interpreted as a decision rule. Thus decision tree can be treated as a set of decision rules.
(1) True or false: "Each path of a minimal decision tree is a minimal consistent decision rule" ?
(2) What are the main differences between
(1) the set of decision rules in rough classifiers; and
(2) the set of decision rules stored in a consistent decision tree?
(3) Find the maximal possible number $M(k)$ of minimal and consistent decision rules for a decision table with k attributes?

Exercise 2: Boundary cuts

Prove that if c is the best cut for an atribute then c must be one of the boundary cut.

Exercise 3: Are the best cuts really good?

A real number $v_{i} \in a(U)$ is called single value of an attribute a if there is exactly one object $u \in U$ such that $a(u)=v_{i}$. The cut $(a ; c)$ is called the single cut if c is lying between two single values v_{i} and v_{i+1}.

Prove the following properties related to single cuts:

Theorem

In case of decision tables with two decision classes, any single cut c_{i}, which is a local maximum of the function Disc, resolves at least half of conflicts in the decision table, i.e.

$$
\operatorname{Disc}\left(c_{i}\right) \geq \frac{1}{2} \cdot \operatorname{conflict}(\mathbb{S}) .
$$

What can you say about the depth of decision tree build by MD-heuristics?

Applications of Rough sets in Machine Learning and Data Mining Part III: Rough sets and Data mining

Nguyen Hung Son

University of Warsaw, Poland
Milan, 26 July 2016

Rough set approach to ML and Data Mining

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Association rule generation

Problem:

For a given information table A, an integer s, and a real number $c \in[0,1]$, search for as much as possible association rules R such that $\operatorname{support}(R) \geq s$ and confidence $(R) \geq c$;

Association rule generation methods consist of two steps:
(1) Generate as much as possible frequent templates $T=D_{1} \wedge \ldots D_{k}$

Association rule generation

Problem:

For a given information table A, an integer s, and a real number $c \in[0,1]$, search for as much as possible association rules R such that $\operatorname{support}(R) \geq s$ and confidence $(R) \geq c$;

Association rule generation methods consist of two steps:
(1) Generate as much as possible frequent templates $T=D_{1} \wedge \ldots D_{k}$
(2) For any template T, search for a partition $T=P \wedge(T-P)$ s.t.:

$$
\begin{aligned}
& P \rightarrow(T-P) \\
& \text { Support }(P) \leq \text { Support }(T) / c \\
& \rightarrow T=\{A, B, C, D, E\} \\
& R 1:\{B, D\} \rightarrow\{A, C, E\} \\
& R 2:\{A, C, D\} \rightarrow\{B, E\}
\end{aligned}
$$

Reduct approach to association rules

Surprise!: the second step can be solved by rough set methods (using α-reducts).

Reduct approach to association rules

Surprise!: the second step can be solved by rough set methods (using α-reducts).

Theorem

Given:

- D - an information system,
- T - a template,
- c - minimal confidence level;

An implication $P \Longrightarrow(T-P)$ is c-confident association rule if and only if P is an α-reduct of a decision table $\left.\mathbf{D}\right|_{T}$, where

$$
\alpha=1-\frac{1 / c-1}{n / \operatorname{support}(T)-1}
$$

$\left.\right\|_{A, B, C, D, E}$	
t_{1}	A C
t_{2}	A B C D E
t_{3}	A B C C D E
t_{4}	A B C C D E
t_{5}	B E
t_{6}	A E
t_{7}	E
t_{8}	A B C D E
t_{9}	A B C D E
t_{10}	A B C D E
t_{11}	A C D
t_{12}	A D
t_{13}	A B C D E
t_{14}	A B
t_{15}	A B C D E
t_{16}	A B C D E
t_{17}	A B C D E
t_{18}	B C D

$\left.\mathbb{D}\right\|_{\mathbf{T}}$	A	B	C	D	E	dec
t_{1}	1	0	1	0	0	0
t_{2}	1	1	1	1	1	1
t_{3}	1	1	1	1	1	1
t_{4}	1	1	1	1	1	1
t_{5}	0	1	0	0	1	0
t_{6}	1	0	0	0	1	0
t_{7}	0	0	0	0	1	0
t_{8}	1	1	1	1	1	1
t_{9}	1	1	1	1	1	1
t_{10}	1	1	1	1	1	1
t_{11}	1	0	1	1	0	0
t_{12}	1	0	0	1	0	0
t_{13}	1	1	1	1	1	1
t_{14}	1	1	0	0	0	0
t_{15}	1	1	1	1	1	1
t_{16}	1	1	1	1	1	1
t_{17}	1	1	1	1	1	1
t_{18}	0	1	1	1	0	0

$\left.\mathbb{D}\right\|_{\mathbf{T}}$	A	B	C	D	E	dec
t_{1}	1	0	1	0	0	0
t_{2}	1	1	1	1	1	1
t_{3}	1	1	1	1	1	1
t_{4}	1	1	1	1	1	1
t_{5}	0	1	0	0	1	0
t_{6}	1	0	0	0	1	0
t_{7}	0	0	0	0	1	0
t_{8}	1	1	1	1	1	1
t_{9}	1	1	1	1	1	1
t_{10}	1	1	1	1	1	1
t_{11}	1	0	1	1	0	0
t_{12}	1	0	0	1	0	0
t_{13}	1	1	1	1	1	1
t_{14}	1	1	0	0	0	0
t_{15}	1	1	1	1	1	1
t_{16}	1	1	1	1	1	1
t_{17}	1	1	1	1	1	1
t_{18}	0	1	1	1	0	0

For $c=100 \%$ we have $\alpha=100 \%$

100\% ass. rules	$C, E \Rightarrow A, B, D$
	$D, E \Rightarrow A, B, C$
	$A, B, C \Rightarrow D, E$
	$A, B, D \Rightarrow C, E$
	$A, B, E \Rightarrow C, D$
	$A, C, D \Rightarrow B, E$

$\left.\mathbb{D}\right\|_{\mathbf{T}}$	A	B	C	D	E	dec
t_{1}	1	0	1	0	0	0
t_{2}	1	1	1	1	1	1
t_{3}	1	1	1	1	1	1
t_{4}	1	1	1	1	1	1
t_{5}	0	1	0	0	1	0
t_{6}	1	0	0	0	1	0
t_{7}	0	0	0	0	1	0
t_{8}	1	1	1	1	1	1
t_{9}	1	1	1	1	1	1
t_{10}	1	1	1	1	1	1
t_{11}	1	0	1	1	0	0
t_{12}	1	0	0	1	0	0
t_{13}	1	1	1	1	1	1
t_{14}	1	1	0	0	0	0
t_{15}	1	1	1	1	1	1
t_{16}	1	1	1	1	1	1
t_{17}	1	1	1	1	1	1
t_{18}	0	1	1	1	0	0

For $c=100 \%$ we have $\alpha=100 \%$

100\% ass. rules	$C, E \Rightarrow A, B, D$
	$D, E \Rightarrow A, B, C$
	$A, B, C \Rightarrow D, E$
	$A, B, D \Rightarrow C, E$
	$A, B, E \Rightarrow C, D$
	$A, C, D \Rightarrow B, E$

For $c=90 \%$ we have

$\left.\right\|_{A, B, C, D, E}$			
t_{1}	A C		
t_{2}	A B C D E		
t_{3}	A B C D E		
t_{4}	A B C D E		
t_{5}	B E		
t_{6}	A E		
t_{7}	E		
t_{8}	A B C D E		
t_{9}	A B C D E		
t_{10}	A B C D E		
t_{11}	A C D		
t_{12}	A D		
t_{13}	A B C D E		
t_{14}	A B		
t_{15}	A B C D E		
t_{16}	A B C D E		
t_{17}	A B C D E		
t_{18}	B C D		

For $c=100 \%$ we have $\alpha=100 \%$

100\% ass. rules	$C, E \Rightarrow A, B, D$
	$D, E \Rightarrow A, B, C$
	$A, B, C \Rightarrow D, E$
	$A, B, D \Rightarrow C, E$
	$A, B, E \Rightarrow C, D$
	$A, C, D \Rightarrow B, E$

For $c=90 \%$ we have

$$
\alpha=1-\frac{\frac{1}{c}-1}{\frac{n}{s}-1}=0.86
$$

90\% ass. rules	$A, B \Rightarrow C, D, E$
	$A, C \Rightarrow C, D, E$
	$A, D \Rightarrow B, C, E$
	$A, E \Rightarrow B, C, D$
	$B, C \Rightarrow A, D, E$
	$B, E \Rightarrow A, C, D$
	$C, D \Rightarrow A, B, E$

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Eager vs. lazy rough classifiers

Eager vs. lazy rough classifiers

Apriori-based reduct calculation

$\mathbb{A} \mid a_{1} \quad a_{2}$	a_{2}	a_{3}	a_{4}	\|dec	\Rightarrow	$\left.\mathbb{A}\right\|_{x}\left\|d_{1} \quad d_{2} \quad d_{3} \quad d_{4} \quad\right\| d e c$				
ID\|outlook tem	hot	hum.	windy	\|play		ID $\left.\left\|\begin{array}{l}\left.a_{1}\right\|_{x} \\ \left.a_{2}\right\|_{x} \\ \left.a_{3}\right\|_{x}\end{array} a_{4}\right\|_{x} \right\rvert\,$ dec				
1 \|sunny 2 sunny	hot			no		1 \|1	0	1	0	no
2 \|sunny h		high		no		$2 \mid 1$	0	1	1	no
3 Overcast h	mot	high	$\begin{aligned} & \text { FA } \\ & \text { FA } \end{aligned}$			$3 \mid 0$	0	1	0	yes
5 \|rainy	cool	hig	FA			$4 \mid 0$	1	1	0	\|yes
5 \|rainy ${ }^{6}$ \|rainy	COO	normal	FAL			$5 \mid 0$	0	0	0	\|yes
6 \|rainy co	cool	norm	RUE	no		$6 \mid 0$	0	0	1	no
7 \|overcast co	cool	normal	TRUE	yes		$7 \mid 0$	0	0	1	\|yes
8 \|sunny m	mild	high	FALSE	no		$8 \mid 1$	1	1	0	no
9 \|sunny co	cool	normal	FALSE	yes		$9 \mid 1$	0	0	0	
10\|rainy m	mild	normal	FALSE	yes		$10 \mid 0$	1	0	0	S
11\|sunny m	mild	normal	TRUE	yes		10		0	1	yes
12\|overcast m	mild	high	TRUE	yes		1	1	0	1	yes
13\|overcast h	hot	normal	FALSE	yes		$12 \mid 0$	1	1	1	yes
14\|rainy m	mild	high	TRUE	no		$13 \mid 0$	0	0	0	yes
x \|sunny m	mild	high	TRUE	?		14 \|0	1	1	1	no

Standard (eager) method

rules	supp.
outlook(overcast) \Rightarrow play(yes)	4
humidity(normal) AND windy(FALSE) \Rightarrow play(yes)	4
outlook(sunny) AND humidity(high) \Rightarrow play(no)	3
outlook(rainy) AND windy(FALSE) \Rightarrow play(yes)	3
outlook(sunny) AND temperature(hot) \Rightarrow play(no)	2
outlook(rainy) AND windy(TRUE) \Rightarrow play(no)	2
outlook(sunny) AND humidity(normal) \Rightarrow play(yes)	2
temperature(cool) AND windy(FALSE) \Rightarrow play(yes)	2
temperature(mild) AND humidity(normal) \Rightarrow play(yes)	2
temperature(hot) AND windy(TRUE) \Rightarrow play(no)	1
outlook(sunny) AND temperature(mild) AND windy(FALSE) \Rightarrow play(no)	1
outlook(sunny) AND temperature(cool) \Rightarrow play(yes)	1
outlook(sunny) AND temperature(mild) AND windy(TRUE) \Rightarrow play(yes)	1
temperature(hot) AND humidity(normal) \Rightarrow play(yes)	1

The testing object \langle sunny, mild, high, TRUE
is matched by two decision rules:

- (outlook $=$ sunny) AND (humidity $=$ high $) \Rightarrow$ play $=$ no (rule nr 3)
- (outlook $=$ sunny) AND (temperature $=$ mild) AND $($ windy $=$ TRUE $) \Rightarrow$ play $=$ yes (rule nr 13)

Lazy algorithm on $\left.\mathbb{A}\right|_{x}$

$$
\begin{aligned}
& \text { MatchRules }(\mathbb{A}, x)=\mathbf{R}_{2} \cup \mathbf{R}_{3}: \\
& \text { (outlook }=\text { sunny) AND (humidity }=\text { high }) \Rightarrow \text { play }=\text { no } \\
& \text { (outlook }=\text { sunny) AND (temperature }=\text { mild }) \text { AND (windy }=\text { TRUE }) \Rightarrow \text { play }=\text { yes }
\end{aligned}
$$

FDP(Frequent Decision Pattern)-tree

- The key concept, adopted from FP-growth algorithm for frequent pattern mining;
- FDP is the prefix tree for the collection of ordered list of descriptors;
- Each node in FDP tree has four fields:
- descriptor_name is the name of descriptor,
- support is the number of training objects that contain all descriptors on the path from the root to the current node,
- class_distribution is the detail support for each decision class and
- node_link are used to create list of nodes of the same descriptor

General scheme

- Construction of $F D P(x)$. This step requires only two data scanning passes:
- First pass:
- calculate the frequencies of descriptors from $\inf f_{A}(x)$
- create $\operatorname{DESC}(x)$ - the ordered list of frequent descriptors;
- Second pass:
- convert each training object u into a list $D(u)$ of frequent descriptors from $\operatorname{DESC}(x)$ that occur in $\inf _{A}(u)$;
- insert the list $D(u)$ into the data structure $F D P(x)$.
- Generation of the set of frequent decision rules from $F D P(x)$ by a recursive procedure.
- Insert the obtained rules into a data structure called the minimal rule tree - denoted by $M R T(x)$ - to get the set of irreducible decision rules. This data structure can be used to perform different voting strategy.

Example: FDP-tree construction - I step

\mathbb{A}	a_{1}	a_{2}	a_{3}	a_{4}	dec
ID	outlook	temp.	hum.	windy	play
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no
x	sunny	mild	high	TRUE	$?$

\Longrightarrow| ID | descriptor lists | dec |
| :--- | :--- | :--- |
| 1 | d3, d1 | $[$ no $]$ |
| 2 | d3, d4, d1 | $[$ no $]$ |
| 3 | d3 | $[$ yes $]$ |
| 4 | d3, d2 | $[$ yes $]$ |
| 5 | | $[$ yes $]$ |
| 6 | d4 | $[$ no $]$ |
| 7 | d4 | $[$ yes $]$ |
| 8 | d3, d2, d1 | $[$ no $]$ |
| 9 | d1 | $[$ yes $]$ |
| 10 | d2 | $[$ yes $]$ |
| 11 | d2, d4, d1 | $[$ yes $]$ |
| 12 | d3, d2, d4 | $[$ yes $]$ |
| 13 | | $[$ yes $]$ |
| 14 | d3, d2, d4 | $[$ no $]$ |

Descriptor:	(outlook=sunny)	(temp.=mild)	(hum.=high)	(windy=true)
Notation:	d 1	d 2	d 3	d 4
Frequency:	5	6	7	6

Example: FDP-tree construction - II step

Example: FDP-tree construction - II step

Example: Rule extraction from FDP-tree

Data sets

- Data sets: Poker Hand, Covertype, Pen-Based Recognition of Handwritten Digits
- Source: UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets)
- Testing objective: performance, scalability, accuracy.

Pendigit

16 attributes, 10 decision classes, 7494 training objects, 3699 test objects;

Poker Hand data

10 attributes, 10 decision classes, 1000000 training objects, 1000 test objects

Poker Hand data - height of FDP-tree

Poker Hand data - nr of nodes

Liczba wierzchołków głównego drzewa FP dla zbioru pokerhand.

Poker Hand data - nr of rules

Liczba wygenerowanych reguł decyzyjnych dla zbioru pokerhand.

Wielkošzbioru treninaoweao Itvs. 1

Covertype

54 attributes, 7 decision classes, 580000 training objects, 500 test objects;

Covertype - height of FDP-tree

Wysokos̈głównego drzewa FP dla zbioru covertype.

Covertype - nr of nodes

Liczba wierzchołków głównego drzewa FP dla zbioru covertype.

Covertype - nr of rules

Liczba wygenerowanych reguł decyzyjnych dla zbioru covertype.

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Soft cuts and soft DT

A soft cut is any triple $p=\langle a, l, r\rangle$, where

- $a \in A$ is an attribute,
- l, $r \in \Re$ are called the left and right bounds of p;
- the value $\varepsilon=\frac{r-l}{2}$ is called the uncertain radius of p.
- We say that a soft cut p discerns a pair of objects x_{1}, x_{2} if $a\left(x_{1}\right)<l$ and $a\left(x_{2}\right)>r$.

- The intuitive meaning of $p=\langle a, l, r\rangle$:
- there is a real cut somewhere between l and r.
- for any value $v \in[l, r]$ we are not able to check if v is either on the left side or on the right side of the real cut.
- $[l, r]$ is an uncertain interval of the soft cut p.
- normal cut can be treated as soft cut of radius 0 .

Soft Decision Tree

- The test functions can be defined by soft cuts
- Here we propose two strategies using described above soft cuts:
- fuzzy decision tree: any new object u can be classified as follows:
- For every internal node, compute the probability that u turns left and u turns right;
- For every leave L compute the probability that u is reaching L;
- The decision for u is equal to decision labeling the leaf with largest probability.
- rough decision tree: in case of uncertainty
- Use both left and right subtrees to classify the new object;
- Put together their answer and return the answer vector;
- Vote for the best decision class.

Searching for best cuts

\mathbf{A}	a_{1}	a_{2}	a_{3}	d
u_{1}	1.0	2.0	3.0	0
u_{2}	2.0	5.0	5.0	1
u_{3}	3.0	7.0	1.0	2
u_{4}	3.0	6.0	1.0	1
u_{5}	4.0	6.0	3.0	0
u_{6}	5.0	6.0	5.0	1
u_{7}	6.0	1.0	8.0	2
u_{8}	7.0	8.0	8.0	2
u_{9}	7.0	1.0	1.0	0
u_{10}	8.0	1.0	1.0	0

Entropy measure

- entropy of an object set $X: \operatorname{Ent}(X)=-\sum_{j=1}^{d} p_{j} \log p_{j}$
- the entropy of the partition induced by a cut (a, c) :

$$
E(a, c ; U)=\frac{\left|U_{L}\right|}{|U|} \operatorname{Ent}\left(U_{L}\right)+\frac{\left|U_{R}\right|}{|U|} \operatorname{Ent}\left(U_{R}\right)
$$

Searching for soft cuts

STANDARD ALGORITHM FOR BEST CUT

- For a given attribute a and a set of candidate cuts $\left\{c_{1}, \ldots, c_{N}\right\}$, the best cut $\left(a, c_{i}\right)$ with respect to given heuristic measure

$$
F:\left\{c_{1}, \ldots, c_{N}\right\} \rightarrow \mathbb{R}^{+}
$$

can be founded in time $\Omega(N)$.

- The minimal number of simple SQL queries of form

SELECT COUNT
FROM datatable
WHERE (a BETWEEN c_{L} AND c_{R}) GROUPED BY d.
necessary to find out the best cut is $\Omega(d N)$

OUR PROPOSITIONS FOR SOFT CUTS

- Tail cuts can be eliminated
- Divide and Conquer Technique

Divide and Conquer Technique:

(1) Divide the set of possible cuts into k intervals;
(2) Select the interval that most probably contains the best cut;
(3) If the considered interval is not STABLE enough then Go to Step 1
(9) Return the current interval(cut) as a result.

Divide and Conquer Technique:

- The number of SQL queries is $O\left(d \cdot k \log _{k} n\right)$ and is minimum for $k=3$;
- How to define the measure evaluating the quality of the interval $\left[c_{L} ; c_{R}\right]$?

Discernibility measure:

We construct estimation measures for intervals in four cases:

	Discernibility measure	Entropy Me- asure
Independency as- sumption	$?$	$?$
Dependency assumption	$?$	$?$

Under dependency assumption, i.e.

$$
\frac{x_{1}}{M_{1}} \simeq \frac{x_{2}}{M_{2}} \simeq \ldots \simeq \frac{x_{d}}{M_{d}} \simeq \frac{x_{1}+\ldots+x_{d}}{M_{1}+\ldots+M_{d}}=\frac{x}{M}=: t \in[0,1]
$$

discernibility measure for $\left[c_{L} ; c_{R}\right]$ can be estimated by:

$$
\frac{W\left(c_{L}\right)+W\left(c_{R}\right)+\operatorname{conflict}\left(c_{L} ; c_{R}\right)}{2}+\frac{\left[W\left(c_{R}\right)-W\left(c_{L}\right)\right]^{2}}{\operatorname{conflict}\left(c_{L} ; x_{R}\right)}
$$

Under dependency assumption, i.e. x_{1}, \ldots, x_{d} are independent random variables with uniform distribution over sets $\left\{0, \ldots, M_{1}\right\}, \ldots,\left\{0, \ldots, M_{d}\right\}$, respectively.

- The mean $E(W(c))$ for any cut $c \in\left[c_{L} ; c_{R}\right]$ satisfies

$$
E(W(c))=\frac{W\left(c_{L}\right)+W\left(c_{R}\right)+\operatorname{conflict}\left(c_{L} ; c_{R}\right)}{2}
$$

- and for the standard deviation of $W(c)$ we have

$$
D^{2}(W(c))=\sum_{i=1}^{n}\left[\frac{M_{i}\left(M_{i}+2\right)}{12}\left(\sum_{j \neq i}\left(R_{j}-L_{j}\right)\right)^{2}\right]
$$

- One can construct the measure estimating quality of the best cut in [$c_{L} ; c_{R}$] by

$$
\operatorname{Eval}\left(\left[c_{L} ; c_{R}\right], \alpha\right)=E(W(c))+\alpha \sqrt{D^{2}(W(c))}
$$

Example

Experimental results

$$
\begin{gathered}
L_{1} L_{2} \ldots L_{d} \\
x_{L} \\
x_{1} x_{2} \cdots x_{d} \\
\operatorname{Eval}\left(\left[c_{L} ; c_{R}\right], \alpha\right)=E(W(c))=\frac{M_{1} M_{2} \ldots M_{d}}{c_{1} R_{2} \ldots R_{d}} \\
\hline
\end{gathered}
$$

Accuracy

Data sets	\#objects \times \#attr.		SLIQ	ENT	MD	MD*	
Australian	690	\times	14	84.9	85.2	86.2	86.2
German	1000	\times	24	-	70	69.5	70.5
Heart	270	\times	13	-	77.8	79.6	79.6
Letter	20000	\times	16	84.6	86.1	85.4	83.4
Satlmage	6435	\times	36	86.3	84.6	82.6	83.9
Shuttle	57000	\times	9	99.9	99.9	99.9	98.7

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

TRSM- Tolerance Rough Sets Model

- Let $D=\left\{d_{1}, d_{2}, \ldots, d_{N}\right\}$ be a set of documents and $T=\left\{t_{1}, t_{2}, \ldots, t_{M}\right\}$ set of index terms for D
- TRSM is an approximation space $\mathcal{R}=\left(T, I_{\theta}, \nu, P\right)$ determined over the set of terms T as follows:
- Tolerance classes of terms: (uncertain parameterized function by a threshold θ)

$$
I_{\theta}\left(t_{i}\right)=\left\{t_{j} \mid f_{D}\left(t_{i}, t_{j}\right) \geq \theta\right\} \cup\left\{t_{i}\right\}
$$

where $f_{D}\left(t_{i}, t_{j}\right)=\mid\left\{d \in D: d\right.$ contains both t_{i} and $\left.t_{j}\right\} \mid$

- Vague inclusion function: For $t_{i} \in T, X \subseteq T$:

$$
\mu\left(t_{i}, X\right)=\nu\left(I_{\theta}\left(t_{i}\right), X\right)=\frac{\left|I_{\theta}\left(t_{i}\right) \cap X\right|}{\left|I_{\theta}\left(t_{i}\right)\right|}
$$

- Structural function: all tolerance classes of terms are considered as structural subsets: $P\left(I_{\theta}\left(t_{i}\right)\right)=1$ for all $t_{i} \in T$.

Tolerance classes

Example: tolerance classes

Term	Tolerance classes for a query "jaguar" using 200 results (returned by Google) and $\theta=9$	Document frequency
Atari	Atari, Jaguar	10
Mac	Mac, Jaguar, OS, X	12
onca	onca, Jaguar, Panthera	9
Jaguar	Atari, Mac, onca, Jaguar, club, Panthera, new,	185
information, OS, site, Welcome, X, Cars		
club	Jaguar, club	27
Panthera	onca, Jaguar, Panthera	9
new	Jaguar, new	29
information	Jaguar, information	9
OS	Mac, Jaguar, OS, X	15
site	Jaguar, site	19
Welcome	Jaguar, Welcome	21
X	Mac, Jaguar, OS, X	14
Cars	Jaguar, Cars	24

- In context of Information Retrieval, a tolerance class represents a concept that is characterized by terms it contains.
- By varying the threshold θ (e.g., relatively to the size of document collection), one can control the degree of relatedness of words in tolerance classes (or the preciseness of the concept represented by a tolerance class).
- Finally, the lower and upper approximations of any subset $X \subseteq T$ can be determined - with the obtained tolerance $\mathcal{R}=\left(T, I_{\theta}, \nu, P\right)$ respectively as

$$
\begin{aligned}
& \mathbf{L}_{\mathcal{R}}(X)=\left\{t_{i} \in T \mid \nu\left(I_{\theta}\left(t_{i}\right), X\right)=1\right\} ; \\
& \mathbf{U}_{\mathcal{R}}(X)=\left\{t_{i} \in T \mid \nu\left(I_{\theta}\left(t_{i}\right), X\right)>0\right\}
\end{aligned}
$$

Enriching document representation

- Let $d_{i}=\left\{t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{k}}\right\}$ be a document in D.
- A "richer" representation of d_{i} can be achieved by its upper approximation in TRSM, i.e.,

$$
\mathbf{U}_{\mathcal{R}}\left(d_{i}\right)=\left\{t_{i} \in T \mid \nu\left(I_{\theta}\left(t_{i}\right), d_{i}\right)>0\right\}
$$

- Extended TF*IDF weighting scheme:

$$
w_{i j}^{\text {new }}= \begin{cases}\left(1+\log \left(f_{d_{i}}\left(t_{j}\right)\right) * \log \frac{N}{f_{D}\left(t_{j}\right)}\right. & \text { if } t_{j} \in d_{i} \\ \min _{t_{k} \in d_{i}} w_{i k} * \frac{\log \frac{N}{f_{D}\left(t_{j}\right)}}{1+\log \frac{N}{f_{D}\left(t_{j}\right)}} & \text { if } t_{j} \in \mathbf{U}_{\mathcal{R}}\left(d_{i}\right) \backslash d_{i} \\ 0 & \text { if } t_{j} \notin \mathbf{U}_{\mathcal{R}}\left(d_{i}\right)\end{cases}
$$

where $w_{i j}$ is the standard TF*IDF weight for term t_{j} in document d_{i}.

Title: EconPapers: Rough sets bankruptcy prediction models versus auditor
Description: Rough sets bankruptcy prediction models versus auditor signalling rates. Journal of Forecasting, 2003, vol. 22, issue 8, pages 569-586. Thomas E. McKee. ...

original vector		using upper approximation	
Term	Weight	Term	Weight
auditor	0.567	auditor	0.564
bankruptcy	0.4218	bankruptcy	0.4196
signalling	0.2835	signalling	0.282
EconPapers	0.2835	EconPapers	0.282
rates	0.2835	rates	0.282
versus	0.223	versus	0.2218
issue	0.223	issue	0.2218
Journal	0.223	Journal	0.2218
MODEL	0.223	MODEL	0.2218
prediction	0.1772	prediction	0.1762
Vol	0.1709	Vol	0.1699
		applications	0.0809
		Computing	0.0643

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Clustering web search results

(1) Searching on the web is tedious and time-consuming:

- search engines can not index the huge and highly dynamic web contain,
- the user's "intention behind the search" is not clearly expressed which results in too general, short queries;
(2) Results returned by search engine can count from hundreds to hundreds of thousands of documents.

Clustering web search results

(1) Searching on the web is tedious and time-consuming:

- search engines can not index the huge and highly dynamic web contain,
- the user's "intention behind the search" is not clearly expressed which results in too general, short queries;
(2) Results returned by search engine can count from hundreds to hundreds of thousands of documents.
(3) Clustering of search results $=$ grouping similar snippets together:
- facilitate presentation of results in more compact form
- enable thematic browsing of the results set. Adranced Search Preferences

results

Alape tange of Mesim producs available at great priges waw hasalthehemiet com wisimo com / 2 2 Kaj. CTachad

TITLE

 DES๔RRMTION for clustering search unisimo comPIRR1 [More result URL.
An Evaluation of Techniques for Clustering Search Results - ...

... In this paper, we compare classification methods from IR and Machine Learning (ML) for clustering search results. Issues such as document. \qquad citeseer.nj.nec.com/leouski96evaluation.html - 24k - Cached - Similar pages

An Evaluation of Techniques for Clustering Search Results -...

... In this paper, we compare classifcation methods from IR and Machine Leanning
(ML)) for clustering search results. Issues such as documem.
citeseer.nj nec comlecusbo95eralustion. html - 24 k - Cached - Similar pages

> Citations: An evaluation of techniques for clustering search ...
> AV Leouski and WB Crot. An evaluation of techniques for clustering search
results. ... An evaluation of techniques for clustering search results. ...
cteseer nj nec com/context/43428/305473 - 20k - Cached - Similar pages
[More results from cheseec ninec com]
IPOF An Evaluation of Techniques for Clustering Search Results
File Format: PDF/Adobe Acrobat - View as HTML
An Evaluation of Techniques for Clustering Search Results 1 Anton V. Leouski and W. Bruce Crot Computer Science Department University of Massachusetts at ... wum-ciir cs umass.edu/-leouskil publications/papers ir. 76 . pdf - Similar pages

Adaptive Query Expansion Based on Clustering Search Results

... Adaptive Query Expansion Based on Clustering Search Results. EGUCHI KOII $=1$ *2, TO HIDETAKA $=1$, KUMAMOTO AKIRA $=1$, KANATA YAKICHI $=1$. ... www ipsj. or jp/members/Joumal/ Eng/4005/article052 htmi - 4k - Cached - Similar pages

Snippet clustering problems

title Grouper: A Dynamic Clustering Interface to Web Search Results

SUMMARY

... There are two possible modes of clustering Web search results. ... [18] AV Leouski and WB Croft, An evaluation of techniques for clustering search results.
URL www8.org/w8-papers/3a-search-query/ dynamic/dynamic.html - 76k - Cached - Similar pages

- Poor representation of snippets can result low correlation between documents and document clusters;
- Except good quality clusters, it is also required to produce meaningful, concise description for cluster;
- The algorithm must be fast to process results on-line.

Snippet clustering problems

TITLE	Grouper: A Dynamic Clustering Interface to Web Search Results
summary	\ldots There are two possible modes of clustering Web search results. ... [18] AV Leouski
and WB Croft, An evaluation of techniques for clustering search results....	
URL	www8.org/w8-papers/3a-search-query/ dynamic/dynamic.html - 76 k - Cached - Similar pages

- Poor representation of snippets can result low correlation between documents and document clusters;
- Except good quality clusters, it is also required to produce meaningful, concise description for cluster;
- The algorithm must be fast to process results on-line.

Existing solutions:

use the domain knowledge likes thesaurus or ontology to correct the similarity relation between snippets.

- Global thesaurus, e.g., WordNet;
- Local and context relationships between terms;

Example: vivisimo screenshot

company | products | solutions | demos | partners | press

\checkmark Vivísimo

Clustered Results
P, jaquar (194)
\oplus - Jaquar Cars (25)
© $>$ Club (1)
$\oplus \rightarrow$ Parts, Auto (16)
© $>$ Cat (14)
$\oplus \rightarrow$ Mac (12)
© $>$ Type (10)
© $>$ Performance (6)
¢ \rightarrow Classic (6)
¢ > Quote, Dealer (17)
¢ \rightarrow Panthera onca (8)
re

Find in clusters:
Enter Keywords

laguar	Search the Web \vee

- Advanced Search $~$ Help! • Tell Us What You Think!

Top 194 results retrieved for the query jaguar (Details)

New! Results now open in the full browser window by default. Click on the [frame] links next to the titles to get the old behavior and an updated toolbar with exciting new features.

Apple Mac OS X 10.2 Jaguar [new window] [trame] [preview]

Sponsored Link
Find great prices on Apple Mac OS X 10.2 Jaguar at CNET Shopper.com, a comprehensive pricing guide that will help you find the latest tech products at great prices. - shopper.cnet.com - show in dusters
are

Get a Free Jaguar Quote [new window] [rame] [preview]
Sponsored Link
Get a free Jaguar quote from a local dealer with Yahoo! Autos. Choose a vehicle, enter your contact info and a local dealer will contact you with a great no-haggle price. - autos.yahoo.com - show in dusters

1. Jaguar Cars [new window] [frame] [preview]

URL: www.jaguarcars. com - show in dusters
Sources: Lyoos 1. Lvocos 4. Looksmat 2. MSN 1
2. www.jaguar-racing.com [new window] [rame] [preview]

URL: www.jaguar-racing.com - show in dusters
Sources: Lycos 2. Lycos 11. Looksmart 35, MSN 3
3. Apple - Mac OS X [new window] [rame] [preview]

Learn about the new OS X Server, designed for the Internet, digital media and workgroup management. Download a technical factsheet. ... Mac OS X version 10.2 Jaguar contains over 150 new features and provides significant enhancements to its modern, UNIX-based.
URL: www apple.com/macosX - show in dusters
Souroes: MSN 2. Lycos 3

- show in clusters
\square

Rough set approach to snippet clustering

(1) Approximation of similarity relation on the set of terms \Rightarrow tolerance rough set model (TRSM);
(2) Enriching document representation using upper approximation of snippets in TRSM;
(3) Clustering the enriched representations of snippets

Tolerance Rough set Clustering algorithm:

(1) documents preprocessing: In TRC, the following standard preprocessing steps are performed on snippets: text cleansing, text stemming, and Stop-words elimination.
(2) documents representation building: two main procedures index term selection and term weighting are performed.
(3) tolerance class generation: see next slide
(4) clustering: k-mean clustering on the enriched document representations; use nearest-neighbor to assign unclassified documents to cluster.
(3) cluster labeling: phrase labeling.

Step 3: Tolerance class generation

Step 4: Clustering

The set of index terms R_{k} representing cluster C_{k} is constructed so that:

- each document d_{i} in C_{k} share some or many terms with R_{k}
- terms in R_{k} occurs in most documents in C_{k}
- terms in R_{k} needs not to be contained by every document in C_{k}

The weighting for terms t_{j} in R_{k} is calculated as an averaged weight of all occurrences in documents of C_{k} :

$$
w_{j}\left(R_{k}\right)=\frac{\sum_{d_{i} \in C_{k}} w_{i j}}{\left|\left\{d_{i} \in C_{k} \mid t_{j} \in d_{i}\right\}\right|}
$$

Outline

(1) Rough sets and association analysis

- Rough sets and association rules
- Scalable Rule-based Classifier
(2) Soft decision tree
- Soft cuts
(3) Rough sets and Text mining
- Clustering of Web Search Results
- Extended TRSM

Extended TRSM using thesaurus

The extended TRSM is an approximation space $\mathcal{R}_{C}=\left(T \cup C, I_{\theta, \alpha}, \nu, P\right)$, where C is the mentioned above set of concepts.

- for each term $c_{i} \in C$ the set $I_{\theta, \alpha}\left(c_{i}\right)$ contains α top terms from the bag of terms of c_{i} calculated from the textual descriptions of concepts.
- for each term $t_{i} \in T$ the set $I_{\theta, \alpha}\left(t_{i}\right)=I_{\theta}\left(t_{i}\right) \cup C_{\alpha}\left(t_{i}\right)$ consists of the tolerance class of t_{i} from the standard TRSM and the set of concepts, whose description contains the term t_{i} as the one of the top α terms. In extended TRSM, the document $d_{i} \in D$ is represented by

$$
\mathbf{U}_{\mathcal{R}_{C}}\left(d_{i}\right)=\mathbf{U}_{\mathcal{R}}\left(d_{i}\right) \cup\left\{c_{j} \in C \mid \nu\left(I_{\theta, \alpha}\left(c_{j}\right), d_{i}\right)>0\right\}=\bigcup_{t_{j} \in d_{i}} I_{\theta, \alpha}\left(t_{i}\right)
$$

Challenge:

How to define the weighting schema?

Example: Explicit Semantic Analysis

Semantic indexing of Medical documents

	term $_{0}$	term $_{1}$	\ldots	term $_{\mathrm{M}}$
doc_{0}	w_{00}	w_{01}	\ldots	$w_{0 \mathrm{M}}$
doc_{1}	w_{10}	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	w_{ij}	\ldots
$\operatorname{doc}_{\mathrm{N}}$	$w_{\mathrm{N} 0}$	\ldots	\ldots	w_{NM}

Representation of system data

	concept $_{0}$	concept $_{1}$	\ldots	concept $_{\mathrm{K}}$
term $_{0}$	c_{00}	c_{01}	\ldots	$c_{0 \mathrm{~K}}$
term $_{1}$	c_{10}	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	c_{jk}	\ldots
$\boldsymbol{t e r m}_{\mathbf{M}}$	$c_{\mathrm{M} 0}$	\ldots	\ldots	c_{MK}

Representation of knowledge base

	concept $_{0}$	concept $_{1}$	\ldots	concept $_{\mathrm{K}}$
doc_{0}	u_{00}	u_{01}	\ldots	$u_{0 \mathrm{~K}}$
doc_{1}	u_{10}	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	u_{ik}	\ldots
$\operatorname{doc}_{\mathrm{N}}$	$u_{\mathrm{N} 0}$	\ldots	\ldots	u_{NK}

New representation of system data

Semantic indexing of Medical documents

	(BioMiled Central	BMC Musculoskeletal Disorders
Journal List > BMC Musculoskelet Disord > v.10; 2009		
BMC Musculoskelet Disord. 2009; 10: 139. PMCID: PMC2780378 Published online 2009 November 13. doi: 10.1186/1471-2474-10-139		
Copyright ©2009 Reme et al, licensee BioMed Central Ltd.		
Expectations, perceptions, and physiotherapy predict prolonged sick leave in subacute low back pain		
S Silje E Reme, ${ }^{\text {®\#1,2,3 }}$ Eli M Hagen, ${ }^{\# 4}$ and Hege R Eriksen ${ }^{\# 1,2}$		
$\frac{\text { c }}{}{ }^{1}$ Research Center for Health Promotion, Faculty of Psychology, University of Bergen, Norway		
W ${ }^{3}$ Department of Psychiatry, Haukeland University Hospital, Bergen, Norway		
- ${ }^{4}$ Spine Clinic, Sykehuset Innlandet HF, Ottestad, Norway		
\% Corresponding author.		
C. "Contributed equally.		
Silje E Reme; silie reme@uib,no; Eli M Hagen; emhagen@online,no; Hege R Eriksen: hege,eriksen@unifob.uib.no		
Received February 25, 2009; Accepted November 13, 2009.		
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.		
-This article has been cited by other articles in PMC.		

Abstract
Other Sectionsy

Background

Brief intervention programs for subacute low back pain (LBP) result in significant reduction of sick leave compared to treatment as usual. Although effective, a substantial proportion of the patients do not return to work. This study
investigates predictors of return to work in LBP patients participating in a

Top 20 concepts:

"Low Back Pain", "Pain Clinics", "Pain Perception", "Treatment Outcome", "Sick Leave", "Outcome Assessment (Health Care)", "Controlled Clinical Trials as Topic", "Controlled Clinical Trial", "Lost to Follow-Up", "Rehabilitation, Vocational", "Pain Measurement", "Pain, Intractable", "Cohort Studies", "Randomized Controlled Trials as Topic", "Neck Pain", "Sickness Impact Profile", "Chronic Disease", "Comparative Effectiveness Research", "Pain, Postoperative"

Experiment results

- Ontology: Medical Subject Headings (MeSH)
- Data Set: Pubmed Central
- Expert tags: documents in Pubmed Central are tagged by human experts using headings and (optionally) accompanying subheadings (qualifiers).
- A single document is
 typically tagged by 10 to 18 heading-subheading pairs.
- Quality Measure: Rand Index

