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Background of Big Data



Background of Big Data

Scientific instruments
(collecting all sorts of data)

Sensor Networks

Sensor technology and
networks
(measuring all kinds of data)

Cwitter

\fV woroPress

& YoulTD)
flickr

Social media and networks
(all of us are generating data)

Social Media
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Mobile devices
(tracking all objects all the time)




Big Data V3/V4/V5
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Granular Computing (GrC)



Granular computing (GrC), as an emerging computational and
mathematical theory which describes and processes uncertain,
vague, incomplete, and massive information, has been successtully
used in knowledge discovery. Following are several representative
GrC models.

e ———

Computing Rough set Quotient Others
with words theory space theory -
s R &0 -
i ) N2 Nl S
g e D g! DEoE 0 papm
Multi-granularity Pattern Discovery Multi-granularity Structure Association

Information granules/Granular construction = Knowledge representation/Pattern
discovery/Cross-granular reasoning




Contents lists available at ScienceDirect

Information Sciences

ER journal homepage: www.elsevier.com/locate/ins e

Data-intensive applications, challenges, techniques @CmssMark
and technologies: A survey on Big Data

C.L. Philip Chen *, Chun-Yang Zhang

Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China

6. Underlying technologies and future researches|

The advanced techniques and technologies for developing Big Data science is with the purpose of advancing and invent-
ing the more sophisticated and scientific methods of managing, analyzing, visualizing, and exploiting informative knowledge
from large, diverse, distributed and heterogeneous data sets. The ultimate aims are to promote the development and inno-
vation of Big Data sciences, finally to benefit economic and social evolutions in a level that is impossible before. Big Data

6.1. Granularcomputing\>Granu|ar computing

When we talk about Big Data, the first property of it is its size. As granular computing (GrC) [142] is a general computation
theory for effectively using granules such as classes, clusters, subsets, groups and intervals to build an efficient computa-
tional model for complex applications with huge amounts of data, information and knowledge, therefore it is very natural
to employ granular computing techniques to explore Big Data. Intuitively, granular computing can reduce the data size into
different level of granularity. Under certain circumstances, some Big Data problems can be readily solved in such way.

It is very natural to employ granular computing techniques to explore Big Data.



What is GrC

dGrC = Problem solving based on different
levels of granularity (detail/abstraction)

1 Level of granularity is essential to human problem
solving

J GrC attempts to capture the basic principles
and methodologies used by human In
problem solving

[Yao, Information Science, 2012]



Example: Hierarchical Image Segment
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~ Deep Learning: An Implementation of GrC
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Convolutional DBN on face images
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Different granularities of partitions and data distributions

Shenggong Ji, Yu Zheng, Tianrui Li, Urban Sensing Based on Human Mobility. UbiComp 2016



GrC in Urban Sensing

Hierarchical "
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Shenggong Ji, Yu Zheng, Tianrui Li, Urban Sensing Based on Human Mobility. UbiComp 2016



Attributes Decision .
Headache Temperature Flu Decision SyStem
—

1 e ‘mal
¥ ki nfmm "o Universe: U={x, X3, ..., X,,}
e2 yes high yes
& yes very_high yes Attributes: C={a,, a5, ..., a,,}
ed no normal no

. :
3 no high no Decision: U/D={d,, dy, ..., d;}
eb no very_high yes
¢ "o high yes Information function: f(x, a)
e8 no very_high no

A decision system is composed of the universe, attribute sets,
decision and information function.



Rough Set Theory (RST)

Upper Approximation
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Calculation of Approximation for
Big Data Analysis



Calculation of Approximation

* A key step in feature selection/attribute
reduction in big data
* A fundamental part in rough set-based
data analysis
— Similar to frequent pattern mining In
association rules



Our contributions

« A parallel method to compute rough set
approximations for big data

« A parallel matrix-based method for computing

approximations in incomplete information
systems

« A comparison of parallel large-scale
knowledge acquisition using rough set theory
on different MapReduce runtime systems



% HDFS
- replication
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3 HDFS
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MapReduce: A programming model for processing big data.



Computing rough set equivalence classes based on MapReduce
Map step

Junbo Zhang, Tianrui Li, Da Ruan, et al. A parallel method for computing rough set approximations. Information Sciences, 2012



Computing rough set approximations based on MapReduce

Input the decision table

S=UA47V.))
l A 4 l
Computing equivalence classes Computing decision classes Constructing the associations | |
based on MapReduce based on MapReduce based on MapReduce In parallel
(Algorithm PACRSEC) (Algorithm PACRSDC) (Algorithm PACAED) 5

S I R

Computing the indexes of
approximations
(Algorithm ACIRSAA)

A 4

Output the approximations
according to the indexes

Junbo Zhang, Tianrui Li, Da Ruan, et al. A parallel method for computing rough set approximations. Information Sciences, 2012



A parallel method to compute approximations for big data
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Sizeup

Sizeup measures how much Ionéer it takes, when the size of data
set is p-times larger than that of the original data set.

Junbo Zhang, Tianrui Li, Da Ruan, et al. A parallel method for computing rough set approximations. Information Sciences, 2012



1 A parallel matrix-based method for computing
approximations in incomplete information systems (lIS)

O S1: A MapReduce-based parallel method to construct the relation
matrix is designed for fast computing approximations

O A Sub-Merge operation is used

L S2: An incremental method is applied to the process of merging
the relation matrices.

O The relation matrix is updated in parallel and incrementally to
efficiently accelerate the computational process.

O S3: A sparse matrix method is employed to optimize the proposed
matrix-based method

O To further improve the performance of the algorithm.

Junbo Zhang, Jian-Syuan Wong, Yi Pan, Tianrui Li, A parallel matrix-based method for computing approximations in
incomplete information systems. |[EEE Transaction on Knowledge and Data Engineering, 2015



[nput: Incomplete Decision Table IDT = (U, CUD) and
the condition attribute subset B

(U.B) (U, D)
" Y B
| l l l | Mag
| |
[ ' v
: (U, B1) (U, B2) (U, By) : Decision Matrix(DM)
I ' Integer
I v v! Sub-Merge Array
: i : ) ' Sub-Matrix . Sub-Matrix -
| Mo MEEs M Byte Array Byte Array ‘

ST A parallél strétegy 'based on MapReduce.
To reduce space complexity, we use byte arrays to storage the
sub-relation .matri_ces.

| ol “ ; Reduce
| . .

| Relation Vecwr | Relation Vector n :

! I

I Byte . Byte I

! Array Array I

S2: The process of merging can be viewed as a process of
adding attributes one by one (A typical incremental process).

‘ Integer ‘ Operations i
Ar;'ay ‘ Bagc Matrix(HD)
l Double
[Induced Matrix(A) | ‘ Array

S3: As the number of condition attributes increases, there are
more and more zero entries in the relation matrix.

| Positive region, Boundary region, Negative region |
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S2 and S3 always have better performance than S1, and, in most
cases, S3 outperforms S2.

Junbo Zhang, Jian-Syuan Wong, Yi Pan, Tianrui Li, A parallel matrix-based method for computing approximations in
incomplete information systems. |[EEE Transaction on Knowledge and Data Engineering, 2015



d A Comparison of Parallel Large-scale Knowledge
Acquisition Using Rough Set Theory on Different

MapReduce Runtime Systems
 We present parallel large-scale rough set based methods for

knowledge acquisition using MapReduce.
 Experimental results on Hadoop, Phoenix and Twister
[ Computational time is mostly minimum in Twister while employing

same cores;
d Hadoop has the most excellent speedup in the larger data set;
O Phoenix has the most excellent speedup in the smaller data set.

' 7- W/:S' tef' Map educe

Junbo Zhang, Jian-Syuan Wong, Tianrui Li, Yi Pan, A Comparison of Parallel Large-scale Knowledge Acquisition Using Rough

Set Theory on Different MapReduce Runtime Systems. International Journal of Approximate Reasoning, 2014
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Data and Model Parallization
Based on RST and GrC for Big
Data



Our contributions

A unified parallel large-scale framework for computing
reduct (feature selection) is presented.

 lIts corresponding three parallel methods are proposed,
e.g., model parallelism (MP), data parallelism (DP),
and model-data parallelism (MDP).

* A unified representation of feature evaluation functions
IS presented.

 The divide-and-conquer methods for 4 representative
evaluation functions are shown.



Our contributions

« MapReduce-based and Spark-based Parallel Large-
scale Attribute Reduction (PLAR) algorithms are
designed.

« GrC theory is introduced for accelerating the process
of attribute reduction.

« By combining with MDP, Algorithm PLAR-MDP is
presented.



Parallellization Strategy

 Data and Model Parallization

( )

Evaluation

Function L

|
I : Importance,
i 1 Function L
| | i
| | ) . Selection
! Evaluation Importance accordin
Search | I Function P 2) to th J
Strategy : : Y

: : Criteria
' ' Evaluation [ Importance

1 g k

|

|

Multi Thread MapReduce
Parallellization Parallellization



(3) Selecting Optimal Feature
X

( Importance > ( Importance ) (Importance >
Ao pt . N /1

® Data
Parallism

Loop

@ Model

Parallism Generating Candidates using Heuristic Search

A Parallel Framework for Attribute Reduction



Divide-and-conquer methods

Reduct by PR (D) = |PO|%|(D)I
Importance of a W/BU{a}(D) ’yB(D)
POSE(D) = Lnj =O {E;€U/B: ECD})

{(
(U

[
1k NG

E;€U/B: ECD})

{E; €U/B:E;CDiVE;CDyV---VE CDp}
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Divide-and-conquer methods

Method ©O(D|B)
PR 7(D|B) == —ya(D) = —=252

U
SCE H(D|B) = —Zp( )Zp( Dj|E;) log(p(Dj| E;))
D,NE;| |D§—Ef]|
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i=1j=
E DB = |Ez| |E| - mDJ Method H(S’l,)
CC HQ( | ) 'Lzzjl <U |U| Z:: PR _|Ei|sg|rga|R(Ei)
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A unified representatlon .
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Split 1
(U1,C U D)

Split 2
(Us,C U D)

Split 3
(U3a cu D)

Map Reduce

Parallel Large-scale Attribute Reduction based on Hadoop, Spark and MDP model



PLAR-Spark Parallel Large-scale Attribute Reduction based on Spark

1 data +— spark.textFile(“iput”).map(parseVector()).cache():

2
3

4

5

6

-
8
9

10

11

12

13

14

Cands +— {C}U{C — {a}|a € C};
foreach B € C'ands do

foreach a € C do
Sig™me(a,C, D) +— O(D|C — {a}) — ©(D|C):
Core = {a|Sig"*"(a,C, D) > €,a € C'};

Reduct +— Clore;

while sropping criterion not met & C' — Reduct # () do
foreach a € C' — Reduct do

. ©(D|B) =data.Ma}1((E; 5, = p))|ReduceByKey(6(S;)).Sum():

ReduceByKey(d(

L O(D|Reduct U {a}) =data.May ((z ReductU{a} Zp)).

aopr = argmin {O(D|Reduct U {a})}:

acC'—Reduct
Reduct <— Reduct U {ayp }:

return Reduct

S;)).Sum():




Speed up by Granulation

Granulation

x1
X2
x3
x4
X5
X6
X7
x8
x9

Granulation

= A O -
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PLAR-MDP: Parallel Large-scale Attribute Reduction based on MDP model

4 \\ O(D|B) = data.Mag {Ep, |Epupl)))|ReduceByKey(8(S;)).Sum() ; // Data
Parallelism G(A) _ {(EA; |EA|) B, € U/A}

s foreach a € C do
6 LSzgm”e"(a C,D) +— O(D|C —{a}) — ©(D|C);
7 Core = {a|Sig"™" (a,C,D) > €,a € C}:

s Reduct +—— Core:

o while stopping criterion not met & C' — Reduct # () do
10 | fora € C — Reduct do in parallel Model Parallelism

11 L O(D|Reduct U {a}) = data.Map{(E reductu{a} (ED. |E Reductu{atup|)) JReduceByKey(0(.S;)).Sum(),
12 | o = argmin {O(D|Reduct U {a})}:
acC'— Reduct

13 | Reduct «— Reduct U {aop }:

14 return Reduct
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[ Hadoop [ Spark [ PLAR-DP [ PLAR-MDP
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Wall-clock time (s)
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KDD99 WEKA 15360
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Parallel Large-scale Attribute Reduction based on Hadoop, Spark and MDP model



Experimental Results

High-Dimension Data

Dataset Gisette

NoF | 5000

N. of Iteration P AR-DP PLAR-MDP: Degree of Model Parallelism

4 8 16 32 64
1 6262 3080 1570 885 472 350 371
2 5975 2982 1480 873 465 343 370
3 6261 3059 1497 869 470 344 370
4 6115 3017 1484 877 468 344 369
5 6194 3155 1512 885 465 348 375

Time 30806 15293 7543 4389 2340 1730 1856




Experimental Results

Astronomical big data

Dataset SDSS

NoF 5201
128 Cores 32 Cores
PR 7432 24274
SCE 7312 24181
LCE 7207 24372

CCE 7383

24295




ILgC: Incremental Learning Based
on Granular Computing for
Evolving Data

-h

The past The present The future



Our contributions

* Dynamic maintenance of approximations
— Variation of the object set
* New patients’ records are added
— Variation of the attribute set
* New disease features become available
— Variation of attribute values

* The feature values may be revised



~ Example---Variation of the attribute set

O Dynamic maintenance of approximations in
set-valued information systems

S,
L A 1B Ip
%, H(X) =A@ (M5 | e G(X))
Z
”Z A MTP = (m;)
ZAeY nxn — UTjj)nxn
Yy
:}99/7%0 AP g 1 1 1
P Dnxn = QG50 T

Junbo Zhang, Tianrui Li, et al, Rough sets based matrix approaches with dynamic attribute variation in set-valued information
systems, Int J of Approximate Reasoning, 2012



- Example---Variation of the attribute set

9 T4
[l 8%

O Dynamic maintenance of approximations in

set-valued information systems when adding
an attribute set

mij = 0 M [(xi, Xj) & Tg

mjj = 1A (Xi,Xj) € Tg

9

- O

GOt m e m

Junbo Zhang, Tianrui Li, et al, Rough sets based matrix approaches with dynamic attribute variation in set-valued information
systems, Int J of Approximate Reasoning, 2012




~ Example---Variation of the attribute set

O Dynamic maintenance of approximations in
set-valued information systems when deleting
an attribute set

Ip—q
Mysn = (m Jnxn :
0, mj = 0\ [(xi, xj) & Tp—q
1 mj = 1M |(x;, Xj) S Tp_Q

Ip—q 1 1
Ao _dlag(ki, AR E)

@': A my @ my

Junbo Zhang, Tianrui Li, et al, Rough sets based matrix approaches with dynamic attribute variation in set-valued information
systems, Int J of Approximate Reasoning, 2012
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Hongmei Chen, Tianrui Li, et al, A Rough-Set Based Incremental Approach for Updating Approximations under Dynamic
Maintenance Environments, |IEEE Transaction on Knowledge and Data Engineering, 2013




Example---Variation of the attributes’ values

O A rough set-based method for updating decision

rules on attribute values’ coarsening and refining
(AVCR)

O The definition of minimal discernibility attribute set is
presented.

O Principles of updating decision rules in case of AVCR
are discussed.

O The rough set-based methods for updating decision
rules in the inconsistent decision system are proposed.

Hongmei Chen, Tianrui Li, et al, A rough set-based method for updating decision rules on attribute values’ coarsening and
refining, IEEE Transaction on Knowledge and Data Engineering, 2014
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Fig. 2: The comparison between non-incremental updating and URIAVC

Hongmei Chen, Tianrui Li, et al, A rough set-based method for updating decision rules on attribute values’ coarsening and

refining, IEEE Transaction on Knowledge and Data Engineering, 2014



Heterogeneous Data Fusion

under Composite Rough Sets



Our contributions

d Composite rough sets are proposed to deal with
attributes of multiple different types in information
systems for data fusion

d A matrix-based incremental method is presented for
fast updating the approximations

A parallel method for computing approximations is

designed based on matrix, and implements it on
Multi-GPU



Composite rough sets
P~

 There may be attributes of multiple different types in
information systems in real-life applications.

 Such information systems are called as composite
information systems.

(U, a non-empty finite set of objects
A =JAx, a union of attribute sets
where A; is an attribute set with the same data type
. V= U Va, Va, = U V,,V, is a domain of attribute a

Ak CcA aeAk
f:UxA—V, namely, U x |[JAx — JVa,
where U x Ay — V,, is an information function
\ f(x,a) denotes the value of object x on attribute a

Junbo Zhang, Tianrui Li, Hongmei Chen: Composite rough sets for dynamic data mining. Information Science, 2014




Composite rough sets

d A composite relation is proposed to process attributes
of multiple different types simultaneously in composite
information systems.

Givenx,ye Uand B=|JB, C A, Bx C A;,

the composite relation CRp is defined as

CRB — {(X,}’)KX,_)’) = ﬂ RBk}

B,CB

Junbo Zhang, Tianrui Li, Hongmei Chen: Composite rough sets for dynamic data mining. Information Science, 2014



Composite rough sets

J An extended rough set model, called as composite
rough sets, is presented.

CRs(X) = {x € U|CRs(x) CX)
CRp(X) = {x € U|CRg(x) N X # 0}

POScg, (X) = CRz(X)
BNDcg, (X) = CRz(X) — CRg(X)
NEGe, (X) = U — CRy(X)

Junbo Zhang, Tianrui Li, Hongmei Chen: Composite rough sets for dynamic data mining. Information Science, 2014



Composite rough sets

 To adapt to the dynamic variation of the composite
information system

d A matrix-based incremental method is presented for fast
updating the approximations when many objects enter
into or get out of the composite information system.

Characteristic function Induced diagonal matrix
: 1 1 1
GX)=(gn g g | | A% —diag(5 )
) /n
Relation matrix Basic vector
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Composite rough sets
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Fig. 1. A comparison of incremental and static algorithms versus the adding ratio of the data.



Matrix representation of approximations
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~ Algorithm and Complexity Analysis
N

Time complexity
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O(nm +n? +nm+nm) = O (n(n+m)) mp On?)

/ \

1 S | 1 begin
D‘ RB‘ CB(D) and C_B(D) 2 D= (dzj)nXm >
3 Rp = Ug oUp;
1000002 4+ | Ce(D)=Rp®D;
100000% Bytes= MB =~ 9536.7MB s | Cs(D)=RzOD;
¢ | OutputCp(D) and C5(D);

Junbo Zhang, Yun Zhu, Yi Pan, Tianrui Li: Efficient Parallel Boolean Matrix Based Algorithms for Computing Composite Rough
Set Approximations. Information Science, 2016



Batch Algorithm

1 begin
2 D = (dij)nxm : // Construct the decision matrix
n

3 fork(—Oto[?-‘—ldo

4 s+— kT +1: // The “start' index

5 e +— mm(kT +T,n): // The “end' index

p U+ {Ts,Tat1, - ,Ta}: // The object set on the current data piece
Xs 00X Xz OX2 e X5 OXp,

- - Xs410X]1 Xs410X2 -+ Xs41OXp

7 Rp = Ug oUpg = { . . . // Construct the relation submatrix
XQ OXI XQ OX2 Xg Ox'n J

8 @(D)[s s e :ﬁB @ D: // Calculate the submatrix of the upper approximation

9 C_B(D)[s :el=Rp ©D; // Calculate the submatrix of the lower approximation

10 Output C (D) and Cp(D):
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Batch Algorithm

Time complexity
O (nlogm +n+n® x |B| + nm+n*m) = O (n*(|B| + m))
Space complexity

O(nm+Tn+nm+mnm) = O (n(T +m))

Junbo Zhang, Yun Zhu, Yi Pan, Tianrui Li: Efficient Parallel Boolean Matrix Based Algorithms for Computing Composite Rough
Set Approximations. Information Science, 2016



Bottleneck of Computation

Il Approximation Matrics
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Speed up by GPU
-l
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9 [CUDA Kernel] Cg(D)[s:e] =Rg ®D;
~ 10 | [CUDAKernel] Cg(D)[s : e] =Rp O D; -
GPU Prog ram Model 1 [Device-to-Host] Transfer Cg (D) and Cg (D) from global memory;
12 | [Host] Output Cp(D) and Cp(D);
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Experimental Results
N
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Experimental Results 8 GPUs
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Uncertainty Information
Processing under Three-way

Decisions in GrC



Our contributions

* Dynamic maintenance of three-way decision

rules
* Incremental three-way decisions with

incomplete information
 Three-way decisions in dynamic decision-
theoretic rough sets



Veracity of Big Data

 Veracity of Big Data refers to the biases, noise
and abnormality in data

 Is the data that is being stored, and mined meaningful
to the problem being analyzed?

[ Veracity deals with uncertain or imprecise data

 Understanding the uncertainty in the data




Dynamic Maintenance of Three-Way
Decision Rules

 The basic idea of TWD is to classify a set of objects into
three regions, where three-way decision rules can be

derived directly.
1 As the data changed continuously, the three regions of a

decision will be changed inevitably, while the induced
three-way decision rules can be changed avoidably.

d The dynamic maintenance principles of three-way
decision rules with incremental object are investigated.

Chuan Luo, Tianrui Li, Hongmei Chen: Dynamic Maintenance of Three-Way Decision Rules. RSKT 2014



Dynamic Maintenance of Three-Way
Decision Rules

Table 1. Updating patterns of the conditional probability.

Rp(C): Des([z]) = Des(C), for [z] C POS(,.¢(C), == = = P,'..((,r'.‘[‘r:'
v v r L. €lzlaxeC x) U ~U (—:;E\;’T’l-
Re(C): Des([z]) = Des(C), for [x] C BND, 5(C), 5 ig ;‘.} z ’ E {I: {x} :-_' :i: %Lz_
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Knowledge Discovery under
RST and GrC



Our contributions

« An updated KDD process model is
presented

* IRoughSet: Incremental learning based
on rough set theory

« RSHadoop: A rough set toolkit for
massive data analysis on Hadoop
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An updated process model of KDD (Li and Ruan, 2007)

Tianrui Li, Da Ruan, An extended process model of knowledge discovery in database, J. of Enter Inform Management, 2007



An updated KDD process model
-

It incorporates data collection in the KDD
process to provide a framework to support
KDD applications better

 Data collection directly affects mining results

J Mining results may improve data collection

Tianrui Li, Da Ruan, An extended process model of knowledge discovery in database, J. of Enter Inform Management, 2007



[Dynamic Big Data ][ Incremental Learning by GrC and CC ]]
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Composite Rough Sets




iLgC: Incremental
Learning Based on

A Granular Computing

 iIRoughSet: Incremental learning based on rough set
theory

O http://sist.swijtu.edu.cn:8080/ccit/project/iroughset.html

d RSHadoop: A rough set toolkit for massive data

analysis on Hadoop

O It is designed large-scale knowledge discovery based on

rough set theory

U http://sist.swjtu.edu.cn:8080/ccit/project/rshadoop.html




Our Solutions--PICKT
P
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