# Rough Sets in Data Mining and Spatial Computing

Sonajhaira Minz Professor School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi 110 067 INDIA http://www.jnu.ac.in/FacultyStaff/Showrofile.asp?SendUserName=sminz

# Outline

PART –I

- Rough Set Theory Applied for Data Mining
- Data Mining using Rough Sets

PART - II

- Remote sensing data classification and Rough Sets
- Spatial Computing

# Background

**Data Mining & Rough Set Theory** – Classification, Clustering:

- Rajni Jain, Girish Kumar Singh,
- Arun, Ashish, Puran, Yashpal, Sunil, Kalicharan, Surender, Mary, Ibrahim, Rangbahadur,
- Multi Agent Systems for Scheduling Problems: Ahmad Balid

Privacy Preserving Data Mining: Fuad Al Yamiri Time-Series Analysis: Ibrahim Abu Ghali Multi-view Ensemble Learning: Vipin Kumar

# PART-I

Applications of Rough Set Concepts for Data Analysis

- Real Data
- Data Models
- Issues in dimension reduction

# Real Data

- Vector/multidimensional representation
   Numeric values of the attributes
- Mostly dirty
- Imprecise
- Not essentially large

# Data Models

- Patterns that describe the data
- Concepts, Class Descriptions, Clusters, Association Rules

# Data Mining: Machine Learning

**Decision Tree Induction:** Attribute Selection for test at an interior node

Problems:

- Conceptually/quantitatively Correlated Attributes
- Over fitted training samples
- Attribute selection error

# Rough Sets: Real Data Experience

- Reduct
  - Types
  - Data reduction
  - Concept description: Cluster analysis
- POS
  - Discretization
- Granulation Tree
  - Association Rule mining
  - Clustering

# Types of Reduct

- (Decision) Relative Reduct
- Core =  $\bigcirc$  Ri, Reduct = {Ri} i= 1,2,...
- Variable Precision RS: Approximate Core
- Dynamic Reduct

# **Decision relative Reduct**

Reduct in comparison to simple diversity index, entropy, information gain, gain ratio, GINI index

#### Complexity -

- reduct computation: O(m<sup>2</sup>n log n)
- tree induction: O(m n log n)
- DT induction (with tree prunning):  $O(m n \log n) + O(n (\log n)^2)$
- RDT:  $[O(m^2 n \log n) + O(|R| n \log n) + O(n (\log n)^2)]$

# Variable Precision RS: Approximate Core

- $\mathbb{R} = \{R_1, R_2, ..., R_n\}$  Set of all reducts Core =  $R_1 \cap R_2 \cap ... \cap R_n$
- $\mathbf{A} = \mathbf{R}_1 \cup \mathbf{R}_2 \cup \ldots \cup \mathbf{R}_n$ |  $\mathbf{A} = \mathbf{m}$
- core  $\subseteq$  core $_{\alpha} \subseteq \mathbb{A}$

Approximate core - (core<sub> $\alpha$ </sub>:  $\alpha$ ') where,

 $\alpha'$  degree of approximation of the set  $\text{core}_{\alpha}$  a superset of core.

#### Approximate Core Cont.

Approximate core a superset of core.

- $C_{1}: (core_{\alpha}: 1) \equiv core, say \{a_{1}\}$   $C_{2}: (core_{\alpha}: 0.98) \equiv \{a_{1}, a_{5}\}$   $C_{3}: (core_{\alpha}: 0.95) \equiv \{a_{1}, a_{2}, a_{5}, a_{7}\}$
- $C_4: (: (core_{\alpha}: 0) \equiv \{a_i: a_i \notin \mathbb{A}\}$
- The additional attribute added to core from A is selected from smallest reduct in R.
- Approximate core instead of reduct RDT core  $_{\alpha}$ :  $\alpha$

# **Dynamic Reduct**

Dynamic RDT Dynamic reduct based decision tree for handling noise.

Information System T = (U, A, V, F), where A = C  $\cup$  D

- C: Conditional attributes
- **D:** Decision attribute

Let power set of T be  $\mathcal{P}(T)$ . A subtable  $\pi$  of T is a member of  $\mathcal{P}(T)$  with respect to the attribute set A.

# **Dynamic Reduct**

Let a subtable  $\pi$  corresponding the attribute set  $\subseteq \mathcal{P}(T)$ .

DR(T,  $\pi$ ): Dynamic Reduct of information T. RED(T, D): Decision relative reduct of T. RED<sub> $\pi$ </sub>(B, D): Decision relative reduct of B with respect to subatable  $\pi$ .

 $\mathsf{DR}(\mathsf{T},\,\pi)=\cap_{\pi\in\mathcal{P}}(\mathsf{T})\,\mathsf{RED}_{\pi}(\mathsf{B},\,\mathsf{D})$ 

# Discretization

- Boolean reasoning
- Using positive region POS of class
- A supervised ( labelled data) groupingmaximizing the cardinality of  $POS_{a_i}(C_p)$  for numeric values of attribute  $a_i$ , with respect to decision class  $C_p$  using a rough membership function  $f_{a_i,c_p}$

## Discretization

Rough membership Function  $f_{a_i,c_p}$ :  $V_{a_i} \to R$ 

$$\arg\max_{x\in I\subseteq V_{a_{i}}}f_{a_{i},c_{p}}(x) = \left\{x \left| \frac{\operatorname{card}(a_{i,I}X_{c_{p}})}{\operatorname{card}(X_{a_{i},I})} \right\}\right\}$$

Where,

$$\begin{aligned} X_{a_{i},I} &= \{ \mathbf{x} \mid \mathbf{x} \in \mathsf{U}, a_{i}(\mathbf{x}) \in \mathsf{I}, \mathsf{I} \subseteq V_{a_{i}} \} \text{ and,} \\ \underline{a_{i,I}} X_{C_{p}} &= \{ \mathbf{x} \mid a_{i}(\mathbf{x}) \in \mathsf{I}, \mathsf{I} \subseteq V_{a_{i}}, \mathsf{D}(\mathbf{x}) = \mathsf{c}_{\mathsf{P}} \} \\ \\ \text{Also,} \quad \mathsf{POS}_{\mathsf{a}_{\mathsf{i}}}(\mathsf{D}) &= \bigcup \{ \underline{a_{i}} X \colon X \in [x]_{\mathsf{D}} \} \end{aligned}$$

# **Reduct: RDT for Classification**

#### Achieve Dimension Reduction using reducts



## **RDT Experiment**



training:test::70:30 of Sunburn and Weather

## **RDT Experiment**



Fig. 5. Comparison of RS, Id3, RDT algorithms w.r.t accuracy, error, uncertainty for Training:Test::70:30 of Sunburn and Weather

# Reduct in other models

- Applied to Covering algorithm
- Applied to Cluster analysis

#### **Reduct based Covering Algorithm**







Fig. 5.10: Comparison of Accuracy measure as obtained by various classifiers for Adult Test Dataset without missing values

#### **Reduct based Covering Algorithm**



Figure 5.13 Comparison of accuracy and probability of error in predicting uncertain objects as obtained by using various classifiers on Adult Test Dataset with 10% missing values from four different categories of attributes

#### **Reduct based Covering Algorithm**



28/07/2016

UNIMIB

# **Reduct based Cluster Analysis**

#### • Iris Data

| Clustering<br>Algorithm | No. of<br>Cluster | Reduct if any                             | Significance of attributes             |
|-------------------------|-------------------|-------------------------------------------|----------------------------------------|
| DBSCAN                  | 4                 | {SL,SW,PL},<br>{SL,SW,PW},<br>{SW,PL,PW } | SL= 0.13, SW=0.17, PL=0.86,<br>PW=0.69 |
| АНС                     | 4                 | {PL, PW}                                  | SL= 0.19, SW=0.21, PL=0.8,<br>PW=0.78  |

# **Reduct based Cluster Analysis**

| Pair wise Clusters for analysis |                | Reduct if any | Significance of attributes         |  |  |
|---------------------------------|----------------|---------------|------------------------------------|--|--|
| First cluster                   | Second Cluster | 1             |                                    |  |  |
| 1                               | 2              | {PL}, {PW}    | SL=0.73, SW=0.44, PL=1,<br>PW=1    |  |  |
| 1                               | 3              | {PL}, {PW}    | SL=0.39, SW=0.93, PL=1,<br>PW=1    |  |  |
| 1                               | 4              | {PL}, {PW}    | SL=0.9, SW=0.32, PL=1,<br>PW=1     |  |  |
| 2                               | 3              | {PL}          | SL=0.63, SW=0.6, PL=1,<br>PW=0.39  |  |  |
| 2                               | 4              | {PW}          | SL=0.24, SW=0.09,<br>PL=0.66, PW=1 |  |  |
| 3                               | 4              | {PL}, {PW}    | SL=0.84, SW=0.72, PL=1,<br>PW=1    |  |  |

 Table 6.5: Difference of clusters obtained by AHC

# Variable Precision RS: Approximate Core

- $\mathbb{R} = \{R_1, R_2, ..., R_n\}$  Set of all reducts Core =  $R_1 \cap R_2 \cap ... \cap R_n$
- $\mathbf{A} = \mathbf{R}_1 \cup \mathbf{R}_2 \cup \ldots \cup \mathbf{R}_n$ |  $\mathbf{A} = \mathbf{m}$
- core  $\subseteq$  core $_{\alpha} \subseteq \mathbb{A}$

Approximate core - (core $_{\alpha}$ :  $\alpha$ ') where,

 $\alpha$  is the degree of approximation of the set core<sub> $\alpha$ </sub> a superset of core.

#### Approximate Core Cont.

Approximate core a superset of core.

- $C_{1}: (core_{\alpha}: 1) \equiv core, say \{a_{1}\}$   $C_{2}: (core_{\alpha}: 0.98) \equiv \{a_{1}, a_{5}\}$   $C_{3}: (core_{\alpha}: 0.95) \equiv \{a_{1}, a_{2}, a_{5}, a_{7}\}$   $C_{4}: (core_{\alpha}: 0) \equiv \{a_{i}: a_{i} \notin \mathbb{A}\}$
- The additional attribute added to core from A is selected from smallest reduct in R.
- Approximate core instead of reduct RDT core<sub> $\alpha$ </sub>:  $\alpha$

### Approximate Core: RDT core<sub> $\alpha$ </sub>: $\alpha$

| Table 1: Learni         | ng schemes and their descriptions used for Forest cover type dataset           |
|-------------------------|--------------------------------------------------------------------------------|
| ALGORITHM               | DESCRIPTION                                                                    |
| RS                      | Classical Rough set approach with full discernibility decision relative reduct |
| CJU                     | Continuous data, J4.8 algorithm, Unpruned - Java implementation of C4.5        |
| CJP                     | Continuous data, J4.8 Algorithm, Pruned - Java implementation of C4.5          |
| RJU                     | Discretized, filtered using Reducts, J4.8 unpruned                             |
| RJP                     | Discretized, filtered using Reducts, J4.8 pruned                               |
| RDTGA-smallest          | Discretized, filtered using smallest reduct from the population, ID3           |
| RJUGA-smallest          | Discretized, filtered using smallest reduct from the population, J4.8 unpruned |
| RJPGA-smallest          | Discretized, filtered using smallest reduct from the population, J4.8, pruned  |
| RJUcore <sub>a:c</sub>  | Discretized, filtered using approx. core with $\alpha \ge c$ , J4.8, unpruned  |
| RJPcore <sub>a :c</sub> | Discretized, filtered using approx. core with $\alpha \ge c$ , J4.8, pruned    |

## $\mathsf{RDT}\,\mathsf{core}_\alpha\!\!:\alpha$

**Table 2:** Frequencies of attributes in population of reducts from 5 randomly selected samples of training data for approximate core identification

| #1 | w1                                      | #2  | w2   | #3   | w3   | #4   | w4   | #5 | w5   |
|----|-----------------------------------------|-----|------|------|------|------|------|----|------|
| 1  | 1                                       | 1   | 1    | 1    | 1    | 1    | 1    | 1  | 1    |
| 2  | 1                                       | 2   | 1    | 2    | 1    | 2    | 1    | 2  | 1    |
| 3  | 1                                       | 3   | 1    | 3    | 1    | 3    | 1    | 3  | 1    |
| 4  | 1                                       | 4   | 1    | 4    | 1    | 4    | 1    | 4  | 1    |
| 5  | 1                                       | 5   | 1    | 5    | 1    | 5    | 1    | 5  | 1    |
| 6  | 1                                       | 6   | 1    | 6    | 1    | 6    | 1    | 6  | 1    |
| 7  | 1                                       | 7   | 1    | 7    | 1    | 7    | - 1  | 7  | 1    |
| 8  | 1                                       | 8   | 1    | 8    | 1    | 8    | 1    | 8  | 1    |
| 9  | 1                                       | . 9 | 1    | 9    | 1    | 9    | 1    | 9  | 1    |
| 10 | 1                                       | 10  | 1    | 10   | 1    | 10 . | 1    | 10 | 1    |
| 37 | 0.99                                    | 52  | 0.99 | 26   | 1    | 24   | 1    | 46 | 1    |
| 45 | 0.96                                    | 25  | 0.97 | 43   | 0.97 | 43   | 0.99 | 47 | 0.99 |
| 44 | 0.96                                    | 26  | 0.97 | 20   | 0.97 | 36   | 0.98 | 25 | 0.98 |
| 52 | 0.96                                    | 43  | 0.97 | 30   | 0.96 | 52   | 0.98 | 37 | 0.98 |
| 34 | 0.95                                    | 45  | 0.97 | 36   | 0.96 | 47   | 0.97 | 34 | 0.97 |
| 36 | 0.96                                    | 46  | 0.97 | 37 . | 0.96 | 26   | 0.97 | 24 | 0.96 |
| 46 | 0.96                                    | 36  | 0.96 | 53   | 0.95 | 34   | 0.97 | 43 | 0.96 |
| 47 | 0.94                                    | 47  | 0.96 | 24   | 0.93 | 25   | 0.95 | 26 | 0.93 |
| 30 | 0.93                                    | 37  | 0.95 | 45   | 0.93 | 37   | 0.95 | 13 | 0.90 |
| 43 | 0.93                                    | 53  | 0.95 | 16   | 0.90 | 38   | 0.91 | 36 | 0.89 |
| 26 | 0.91                                    | 28  | 0.92 | 34   | 0.90 | 45   | 0.91 | 33 | 0.87 |
| 16 | 0.89                                    | 44  | 0.92 | 46   | 0.90 | 46   | 0.91 | 38 | 0.84 |
| 24 | 0.89                                    | 24  | 0.91 | 38   | 0.89 | 16   | 0.88 | 18 | 0.82 |
| 20 | 0.87                                    | 16  | 0.90 | 27   | 0.87 | 33   | 0.85 | 20 | 0.82 |
|    | 21 Y |     |      |      |      |      |      |    |      |

## $\mathsf{RDT}\,\mathsf{core}_\alpha\!\!:\alpha$

#### Table 5: Comparison of CS for the Dataset

|                        | А    | Att | R          | S        |      |
|------------------------|------|-----|------------|----------|------|
| Algorithm              | (%)  |     | $(10^{3})$ | $(10^4)$ | CS   |
| RS                     | 13.4 | 29  | 24         | 70       | 0.04 |
| CJU                    | 82.3 | 53  | 28         | 73       | 0.21 |
| CJP                    | 82.5 | 51  | 2          | 55       | 0.21 |
| RDTGA                  | 74.1 | 29  | 11         | 5        | 0.19 |
| RJUGA                  | 79.8 | 29  | 30         | 29       | 0.21 |
| RJPGA                  | 78.4 | 29  | 78         | 6        | 0.20 |
| RJUcore <sub>a:1</sub> | 77.6 | 10  | 35         | 18       | 0.22 |
| RJPcore <sub>x1</sub>  | 75.6 | 10  | 6          | 2        | 0.21 |

#### Notes:

A: accuracy of the model

Att: number of attributes used in the classifier

R: number of rules in the classifier

S: number of selectors in the classifier

**Table 6**: Comparison of accuracywith previously reported results forForest cover type dataset

| MODEL                   | A      |
|-------------------------|--------|
| <b>Back Propagation</b> | 70%    |
| Linear                  |        |
| Discriminant            | 58%    |
| Analysis                |        |
| SVM                     | 71%    |
| SVM modified for        |        |
| unrepresentative        | 73.41% |
| class                   |        |
| C5                      | 83.7%  |
| CHAID                   | 72.7%  |
| CART                    | 68.9%  |
| XCS                     | 66.9%  |
| CJU                     | 82.3%  |
| CJP                     | 82.6%  |
| <b>RDTGA-smallest</b>   | 74.1%  |
| <b>RJUGA-smallest</b>   | 79.8%  |
| <b>RJPGA-smallest</b>   | 78.5%  |
| RJUcore <sub>x</sub> :1 | 77.0%  |
| RJPcore <sub>∞</sub> :1 | 75.0%  |

# **Dynamic Reduct**

Dynamic RDT Dynamic reduct based decision tree for handling noise.

Information System T = (U, A, V, F), where A = C  $\cup$  D

- C: Conditional attributes
- **D:** Decision attribute

Let power set of T be  $\mathcal{P}(T)$ . A subtable  $\pi$  of T is a member of  $\mathcal{P}(T)$  with respect to the attribute set A.

# **Dynamic Reduct**

Let a subtable  $\pi$  corresponding the attribute set  $\subseteq \mathcal{P}(T)$ .

DR(T,  $\pi$ ): Dynamic Reduct of information T. RED(T, D): Decision relative reduct of T. RED<sub> $\pi$ </sub>(B, D): Decision relative reduct of B with respect to subatable  $\pi$ .

 $\mathsf{DR}(\mathsf{T},\,\pi)=\cap_{\pi\in\mathcal{P}}(\mathsf{T})\,\mathsf{RED}_{\pi}(\mathsf{B},\,\mathsf{D})$ 

### Dynamic Reduct based RDT: Nutrition Dataset (Real)



Figure 2. Comparison of learning schemes w.r.t. mean of accuracy, complexity, number of rules and number of attributes for Nutrition data sets using 10 X 10 Cross validation experiments

# Discretization

- Boolean reasoning
- Using positive region POS of class
- A supervised ( labelled data) groupingmaximizing the cardinality of  $POS_{a_i}(C_p)$  for numeric values of attribute  $a_i$ , with respect to decision class  $C_p$  using a rough membership function  $f_{a_i,c_p}$

## Discretization

Rough membership Function  $f_{a_i,c_p}$ :  $V_{a_i} \to R$ 

$$\arg\max_{x\in I\subseteq V_{a_{i}}}f_{a_{i},c_{p}}(x) = \left\{x \left| \frac{\operatorname{card}(a_{i,I}X_{c_{p}})}{\operatorname{card}(X_{a_{i},I})} \right\}\right\}$$

Where,

$$\begin{aligned} X_{a_{i},I} &= \{ \mathbf{x} \mid \mathbf{x} \in \mathsf{U}, a_{i}(\mathbf{x}) \in \mathsf{I}, \mathsf{I} \subseteq V_{a_{i}} \} \text{ and,} \\ \underline{a_{i,I}} X_{C_{p}} &= \{ \mathbf{x} \mid a_{i}(\mathbf{x}) \in \mathsf{I}, \mathsf{I} \subseteq V_{a_{i}}, \mathsf{D}(\mathbf{x}) = \mathsf{c}_{\mathsf{P}} \} \\ \\ \mathsf{Also,} \quad \mathsf{POS}_{\mathsf{a}_{\mathsf{i}}}(\mathsf{D}) &= \bigcup \{ \underline{a_{i}} X \colon X \in [x]_{\mathsf{D}} \} \end{aligned}$$

# **Discretization using POS**

| Properties              | Datasets |          |          |          |  |  |  |
|-------------------------|----------|----------|----------|----------|--|--|--|
| Troperties              | Iris     | Ion      | Hea      | Pid      |  |  |  |
| No. of Examples         | 150      | 351      | 270      | 768      |  |  |  |
| No. of Classes          | 3        | 2        | 2        | · 2      |  |  |  |
| No. of Attributes       | 4        | 34       | 13       | 8        |  |  |  |
| No. of Cont. Attributes | 4        | 32       | 6        | 8        |  |  |  |
| All-Cont/Mix-mode       | All-Cont | Mix-mode | Mix-mode | All-Cont |  |  |  |
## **Discretization using POS**

• Result-1

 Table 3.3: Comparison of the Eight Discretization Schemes for Labeled

 Data based on CAIR Value

| Discretization    | Datasets |       |       |       |  |  |  |
|-------------------|----------|-------|-------|-------|--|--|--|
| Method            | Iris     | Ion   | Hea   | Pid   |  |  |  |
| Equal Width       | 0.40     | 0.098 | 0.087 | 0.058 |  |  |  |
| Equal frequency   | 0.41     | 0.095 | 0.079 | 0.052 |  |  |  |
| Patterson-Niblett | 0.35     | 0.192 | 0.088 | 0.052 |  |  |  |
| IEM               | 0.52     | 0.193 | 0.118 | 0.079 |  |  |  |
| Max. Entropy      | 0.30     | 0.100 | 0.081 | 0.048 |  |  |  |
| CADD              | 0.51     | 0.130 | 0.098 | 0.057 |  |  |  |
| CAIM              | 0.54     | 0.168 | 0.138 | 0.084 |  |  |  |
| Proposed Method   | 0.56     | 0.237 | 0.128 | 0.107 |  |  |  |

## **Discretization using POS**

#### • Result-2

Table 3.4: Comparison of the Eight Discretization Schemes for Labeled

| Discretization    |          | Datasets |     |     |  |  |  |  |
|-------------------|----------|----------|-----|-----|--|--|--|--|
| Method            | Iris Ion |          | Hea | Pid |  |  |  |  |
| Equal Width       | 16       | 640      | 56  | 106 |  |  |  |  |
| Equal frequency   | 16       | 640      | 56  | 106 |  |  |  |  |
| Patterson-Niblett | 48       | 384      | 48  | 62  |  |  |  |  |
| IEM               | 12       | 113      | 10  | 17  |  |  |  |  |
| Max. Entropy      | 16       | 572      | 56  | 97  |  |  |  |  |
| CADD              | 16       | 536      | 55  | 96  |  |  |  |  |
| CAIM              | 12       | 64       | 12  | 16  |  |  |  |  |
| roposed Method    | 12       | 85       | 11  | 33  |  |  |  |  |

Data based on Number of Intervals

28/07/2016

## **Discretization using POS**

#### • Result-3

| Evaluation | Discretization | Datasets |       |  |
|------------|----------------|----------|-------|--|
| Parameter  | Scheme         | Iris     | Pid   |  |
| CAIR Value | Labeled        | 0.56     | 0.107 |  |
|            | Unlabeled      | 0.53     | 0.105 |  |
| Numbers of | Labeled        | 12       | 33    |  |
| Intervals  | Unlabeled      | 12       | 37    |  |

-lad and unlabalad data

Table 3.5: Comparison of the Discretization by proposed scheme for

#### **Granulation Tree**



Summer School: Decision Making, Data mining, Knowledge Representation, UNIMIB

40

## **Granulation Tree**

| Result                              | Datasets |     |     |     |  |  |
|-------------------------------------|----------|-----|-----|-----|--|--|
|                                     | Iris     | Ion | Hea | Pid |  |  |
| 1. No. of Granules                  | 23       | 89  | 153 | 209 |  |  |
| 2. No. of Fine Granules             | 18       | 88  | 151 | 145 |  |  |
| 3. No. of Coarse Granules           | 5        | 1   | 2   | 64  |  |  |
| 4. No. of object causing coarseness | 5        | 1   | 2   | 128 |  |  |

# **Clustering using Granules**

#### **Data Description**

Table 5.1 Data Set Description

| Properties              |         |                | Datasets |         |         |
|-------------------------|---------|----------------|----------|---------|---------|
|                         | Iris    | Solar<br>Flare | Soybean  | Nursery | Weather |
| Number of<br>Instances  | 150     | 1066           | 307      | 3240    | 14      |
| Number of<br>Attributes | 5       | 13             | 35       | 8       | 5       |
| Missing<br>value        | None    | None           | Yes      | None    | None    |
| Type of attribute       | Numeric | Nominal        | Nominal  | Nominal | Nominal |

## **Clustering using Granules**

| Class<br>sepal length | 1                 | 2                 | 3                 |
|-----------------------|-------------------|-------------------|-------------------|
| 1                     | (47/62):0.758065  | (11/98):0.112245  | (1/108):0.009259  |
| 2                     | (3/118):0.025424  | (36/85):0.423529  | (32/89):0.359551  |
| 3                     | (0/70):0.000000   | (3/67):0.044776   | (17/53):0.320755  |
| sepai widin<br>l      | (36/102):0.352941 | (23/115):0.200000 | (29/109):0.266055 |
| 2                     | (13/52):0.250000  | (0/65):0.000000   | (2/63):0.031746   |
| 3                     | (1/96):0.010417   | (27/70):0.385714  | (19/78):0.243590  |
| pe tal le ng th<br>l  | (50/50):1.000000  | (0/100):0.000000  | (0/100):0.000000  |
| 2                     | (0/104):0.000000  | (48/56):0.857143  | (6/98):0.061224   |
| 3                     | (0/96):0.000000   | (2/94):0.021277   | (44/52):0.846154  |
| petal width<br>1      | (49/50):0.980000  | (0/99):0.000000   | (0/99):0.000000   |
| 2                     | (1/57):0.017544   | (7/51):0.137255   | (0/58):0.000000   |
| 3                     | (0/91):0.000000   | (38/53):0.716981  | (3/88):0.034091   |
| 4                     | (0/102):0.000000  | (5/97):0.051546   | (47/55):0.854545  |
| AVERAGE G             | RANULES QUALITY:  | 0.20              |                   |



## Histon for Image processing using Rough Sets

- Let an image I of size M×N of L intensity levels  $g_{i,j} \in [0, L-1]$ .
- The histogram indicates the number of pixels along Y-axis corresponding intensity values 0-255 along X-axis, indicate lower approximation or positive region.
- For segmentation an intensity to identify different concepts in a data

#### Image Processing: Histogram



(a)



100

(d)

bin

200

0.015





255

## Rough Set: Histon

Color images have three histograms each for R, G and B intensity values. For  $i \in \{R, G, B\}$  and  $0 \le g < L$  a histogram is

h(g) =  $\sum_{m=1}^{M} \sum_{n=1}^{N} \delta(I(m, n) - g)$ ; Where  $\delta(.)$  is the Dirac impulse function.

Histon H(g) H(g) =  $\sum_{m=1}^{M} \sum_{n=1}^{N} (1 + X(m,n)) \delta(I(m,n) - g)$ Where,  $X(m,n) = \begin{cases} 1 d_{\tau}(m,n) < threshold \\ 0 \ otherwise \end{cases}$ ,  $d_{\tau}(m,n)$ indicates difference in intensities of a pixel (m,n) with its neighbours

## Part -II

- Spatial Data
- Spatial Computing

## Spatial & Remote Sensing Data: The Team

Mining Spatial & Remote Sensing Data (Big Data Analytics)

- Spatial Data Mining: A Machine Learning Approach, Dr. Anshu Dixit Ph.D. 2012 (IASRI)
- "Change Detection Using Unsupervised Learning Algorithms for Delhi, India," Asian Journal of Geoinformatics, Vol 13, No. 4, 12-15, 2013, Hemant Kr. Aggarwal, M.Tech. 2013 (Ph.D. IIITD)
- Active Learning for Semi-supervised Classification in Hyperspectral Remote Sensing Images, Monoj Pradhan (Ph.D)
- Semi-Supervised Classification, Prem Shankar (Ph.D)
- Content-based Classification, Saroj Kumar Sahu (Ph.D)
- Rough Set Based Extreme Learning Machine for Hyper Spectral Data Classification, Ankit Malviya (M.Tech)
- Comparing Decision Tree and Markov Random Field based Classification for Spatial Data, Mahedra Gupta (M.Tech)

#### Spatial Data: Satellite Image



#### Spatial Data: Multidimensinal

| District / S To | otal numl | Total num | Number of | Number of | Number of | Number of | 96 1st Trim 9 | 6 1st Trim | 96 JSY regis |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|------------|--------------|
| _Hisar          | 34723     | 33456     | 26258     | 21979     | 12312     | 11440     | 75.6          | 65.6       | 35.5         |
| Adampur F       | 383       | 0         | 156       | 0         | 85        | 0         | 40.7          | A          | 22.2         |
| AryaNagar       | 3243      | 3260      | 2452      | 2000      | 1041      | 998       | 75.6          | 61.3       | 32.1         |
| Barwala         | 4960      | 4860      | 4115      | 3282      | 2065      | 1876      | 83            | 67.5       | 41.6         |
| District HC N   | A         | NA        | NA        | NA        | NA        | NA        | NA P          | A          | NA           |
| Hansi Urba      | 1101      | 936       | 377       | 355       | 375       | 353       | 34.2          | 37.9       | 34.1         |
| Hisar Urba      | 5411      | 4396      | 2659      | 1867      | 1675      | 1302      | 49.1          | 42.5       | 31           |
| Mangali         | 3643      | 3548      | 2799      | 2592      | 1240      | 1197      | 76.8          | 73.1       | 34           |
| Narnaund        | 2999      | 3022      | 2711      | 2268      | 1057      | 1017      | 90.4          | 75         | 35.2         |
| Sisai           | 3336      | 3516      | 2854      | 2550      | 1299      | 1199      | 85.6          | 72.5       | 38.9         |
| Siswal          | 3499      | 3660      | 3015      | 2735      | 1117      | 1119      | 86.2          | 74.7       | 31.9         |
| Sorkhi          | 2929      | 2965      | 2405      | 2166      | 965       | 981       | 82.1          | 73.1       | 32.9         |
| Uklana          | 3219      | 3293      | 2715      | 2164      | 1393      | 1398      | 84.3          | 65.7       | 43.3         |

### Spatial Data: Medical Images



28/07/2016

#### Geo-Spatial...



mining, Knowledge Representation,

Knowledge-oriented Remote Sensing Image Analysis

Hemant Kumar Aggarwal, Sonajharia Minz, *"Change Detection Using Unsupervised Learning Algorithms for Delhi, India,*" Asian Journal of Geoinformatics, Vol 13, No. 4, 12-15, 2013

## Motivation

- Knowledge-oriented Change Detection
- Measure effectiveness of Machine Learning for Change Detection
- Explore potential for dimensionality reduction

#### **Experimental Results**



Original



Water



Vegetation



Urban



Features 28/07/2016







K-meansher School: Decision Making, Data mean mining, Knowledge Representation, UNIMIB ΕM

## Percentage of Pixels per Class

| Year | Kmeans | EM     | FCM   | Kmeans | EM    | FCM   | Kmeans | EM   | FCM  |
|------|--------|--------|-------|--------|-------|-------|--------|------|------|
|      |        |        |       |        |       |       |        |      |      |
| 1998 | 52.8   | 76.6   | 45.8  | 41.929 | 15.81 | 49.23 | 5.265  | 7.58 | 4.97 |
| 1999 | 35.16  | 55.43  | 43.25 | 59.19  | 41.22 | 53.97 | 5.648  | 3.35 | 2.78 |
| 2000 | 37.318 | 56     | 42.89 | 58.773 | 40.34 | 53.6  | 3.909  | 3.65 | 3.51 |
| 2001 | 36.016 | 38.72  | 51.85 | 59.881 | 55.78 | 44.45 | 4.104  | 5.49 | 3.69 |
| 2002 | 34.283 | 64.61  | 63.25 | 62.282 | 32.95 | 33.68 | 3.435  | 2.43 | 3.06 |
| 2009 | 37.867 | 35.025 | 38.02 | 58.837 | 61.19 | 58.79 | 3.296  | 3.78 | 3.18 |
| 2010 | 35.717 | 52.87  | 40.39 | 58.438 | 41.57 | 54.3  | 5.848  | 5.56 | 5.3  |
| 2011 | 34.662 | 58.54  | 36.16 | 61.904 | 37.11 | 60.56 | 3.434  | 4.35 | 3.27 |

## **Total Percentage Change**

| Class     | Water | Built-up | Vegetation |
|-----------|-------|----------|------------|
| Algorithm |       |          |            |
| K-means   | -0.26 | 2.85     | -2.59      |
| EM        | -0.46 | 3.04     | -2.58      |
| FCM       | -0.24 | 1.62     | -1.38      |

# Conclusion

- Partitioning based methods are more effective than probabilistic and fuzzy.
- Decrease in vegetated area and increase in urban area.
- Dimensionality Reduction by 50%
- Future Work
- Environmental Footprint and More Spatial Footprint Change Discovery







### Rough Set based classification of Hyperspectral Data (Master's Dissertation: Ankit Malvia )



#### Framework



## **Results: Dimension Reduction**



| S.N. | Datasets             | Elapsed time | Total Bands | No. Selecte | d bands     | Selected Features |
|------|----------------------|--------------|-------------|-------------|-------------|-------------------|
| 1.   | Indian Pines         | 1156.42      | 200         | 4           | B1, B22, B4 | 3, B84            |
| 2.   | Pavia University sce | ne 72165.33  | 103         | 4           | B1, B2, B87 | , B103            |

# **Spatial Computing**

Challenges pertaining to Data Characteristics

- Not iid Spatial Auto correlation (Tobler's First Law of Geography – nearby objects are related to each other more than the objects at a distance)
- Class imbalance problem (challenge to Statistical and probabilistic methods)
- Classification very small labelled data

### **Spatial Computing: Patterns**



#### Spatial Patterns: Hotspot



## **Spatial Computing: Patterns**



#### Patterns based on 2D plane



### Spatial Patterns: Spherical Earth



## Spatial Computing: Transformative Technology

- GPS
- Remote Sensing
- GIS
- Spatial Database Management Systems
- Spatial Statistics

# **Spatial Computing: Opportunities**

- Short Term
  - Spatial Predictive Analysis
  - Geocollaborative Systems
  - Moving Spatial Computing
- Long Term
  - Fusion to Synergies
  - Sensors to Clouds
  - Spatial Cognitive first
  - Geoprivacy
## **Spatial Computing**

- Shashi Shekhar: McKnight Distinguished University Professor, Department of Computer Science at the University of Minnesota, MN, USA
- <u>https://vimeo.com/148128607</u>
- http://cacm.acm.org/videas/sptial-computing

## Some Important References

- 1. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A., Rough Sets: A tutorial, 1997
- 2. Zadeh, L.A., Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems, 90, 1997
- 3. Zadeh, L.A., Granular Computing and Rough Set theory, LNAI 4585, 2007
- 4. Grzymala, J.B., Introduction to Rough Set Theory and Application, ppt
- 5. Jain, Rajni, Rough Set Theory based Decision Tree Induction for Data Mining, Ph.D. Thesis, 2005
- 6. Singh, Girish, Rough Set Theory for Data Mining, Ph.D. Thesis, 2007
- Jain Rajni and Sonajharia Minz. 2008. "Drawing Conclusions from Forest Cover Type Data -The Hybridized Rough Set Model", *Journal of the Indian Society of Agricultural Statistics*, 62(1):75-84
- 8. Girish Kumar Singh and Sonajharia Minz. 2007. Discretization Using Clustering and Rough Set Theory. In: *Proceedings of International Conference on Computing: Theory and Applications (ICCTA'07).* ieeecomputersociety.org/10.1109/ICCTA.2007.51
- 9. Mushrif, M.M., Ray, A.K., A-IFS Histon Based Multithresholding Algorithm for Color Image Segmentation, IEEE Signal Processing Letter, Vol 16, No. 3, 2009

- Jain, Rajni and Sonajharia Minz. 2007. Intelligent data analysis for identifying rich: The rough set way. In: *Proceedings of 2<sup>nd</sup> National Conference on Methods and Models in Computing (NCM2C 2007)*, Eds: S. Minz and D.K. Lobiyal, JNU, New Delhi, Allied Publishers Pvt. Ltd., pp. 117-130.
- Minz, S. and Rajni Jain. 2005. Refining decision tree classifiers using rough set tools, *International Journal of Hybrid Intelligent System* 2(2):133-148.
- Rajni Jain and Sonajharia Minz. 2005. Dynamic RDT model for data mining, Proceedings of 2nd Indian International Conference on Artificial Intelligence (IICAI-05), Pune, India.
- Rajni Jain and Sonajharia Minz. 2005. Dynamic RDT model for mining rules from real data, *Journal of the Indian Society of Agricultural Statistics*, 59(2).
- Sonajharia Minz, Rajni Jain. 2003. Rough set-based Decision Tree model for Classification, Proceedings of 5th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2003 Prague, Czech Republic, *LNCS 2737*, 172-181. Rajni Jain, Sonajharia Minz. 2003. Classifying Mushrooms in the Hybridized Rough Sets Framework, Proceedings of *1st Indian International Conference on Artifical Intelligence (IICAI-03)*, Bhanu Prasad (Editor) 554-567.
- Sonajharia Minz, Rajni Jain. 2003. Hybridizing Rough set framework for Classification: An Experimental View, *Design and Application of Hybrid Intelligent Systems* A. Abraham et. al (Eds.), IOS Press, 631-640.
- Rajni Jain, Sonajharia Minz. 2003. Should decision trees be learned using rough sets?, Proceedings of 1st Indian International Conference on Artificial Intelligence (IICAI-03), Bhanu Prasad (Editor)1466-1479.

## Thank YOU



Summer School: Decision Making, Data mining, Knowledge Representation, UNIMIB