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PART –I  

• Rough Set Theory Applied for Data Mining 

• Data Mining using Rough Sets  

PART - II 

• Remote sensing data classification and Rough 
Sets 

• Spatial Computing   
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Background 

Data Mining & Rough Set Theory – Classification, 
Clustering:  

• Rajni Jain, Girish Kumar Singh,  
• Arun, Ashish, Puran, Yashpal, Sunil, Kalicharan, 

Surender, Mary, Ibrahim, Rangbahadur, 
Multi Agent Systems for Scheduling Problems: 

Ahmad Balid 
Privacy Preserving Data Mining: Fuad Al Yamiri 
Time-Series Analysis: Ibrahim Abu Ghali 
Multi-view Ensemble Learning: Vipin Kumar 
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PART-I 

Applications of Rough Set Concepts for Data 
Analysis 

– Real Data 

– Data Models 

– Issues in dimension reduction 

 



Real Data 

• Vector/multidimensional representation 

– Numeric values of the attributes 

• Mostly dirty 

• Imprecise 

• Not essentially large 
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Data Models 

• Patterns that describe the data 

• Concepts, Class Descriptions, Clusters, 
Association Rules 

 

 

28/07/2016 

Summer School: Decision Making, Data 

mining, Knowledge Representation, 

UNIMIB 

6 



Data Mining: Machine Learning 

Decision Tree Induction: Attribute Selection for 
test at an interior node  

Problems: 

• Conceptually/quantitatively - Correlated 
Attributes 

• Over fitted training samples 

• Attribute selection error 
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Rough Sets: Real Data Experience 

• Reduct  
– Types 

– Data reduction 

– Concept description: Cluster analysis 

• POS 
– Discretization 

• Granulation Tree 
– Association Rule mining 

– Clustering 
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Types of Reduct 

• (Decision) Relative Reduct  

• Core =  Ri, Reduct = {Ri} i= 1,2,… 

• Variable Precision RS: Approximate Core 

• Dynamic Reduct 

 

 

 



Decision relative Reduct 

Reduct in comparison to simple diversity index, 
entropy, information gain, gain ratio, GINI 
index 

Complexity -  
• reduct computation: O(m2n log n)   

• tree induction: O(m n log n) 

• DT induction (with tree prunning): O(m n log n) + O(n (log n)2) 

• RDT:  [O(m2n log n) + O(|R| n log n) + O(n (log n)2) 
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Variable Precision RS: Approximate 
Core 

• R = {R1, R2, ..., Rn} Set of all reducts 
Core = R1  R2  ...  Rn  

• A = R1  R2  ...  Rn  

 | A| = m 

• core  core  A 

Approximate core - (core: ') where,  

‘ degree of approximation of the set core a 
superset of core.  
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Approximate Core      Cont. 

Approximate core a superset of core.  

C1: (core: 1)  core, say {a1} 

C2: (core: 0.98)  {a1, a5} 

C3: (core: 0.95)  {a1, a2, a5, a7} 

C4: (: (core: 0)  {ai: ai  A} 

• The additional attribute added to core from A is 
selected from smallest reduct in R. 

• Approximate core instead of reduct RDT core:  
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Dynamic Reduct 

Dynamic RDT Dynamic reduct based decision tree 
for handling noise. 

 Information System T = (U, A, V, F), where A = C  
D 

C: Conditional attributes  
D: Decision attribute 

Let power set of T be P(T). A subtable  of T is a 
member of P (T) with respect to the attribute set 
A.  
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Dynamic Reduct 
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Let a subtable  corresponding the attribute set 

 P (T). 

DR(T, ): Dynamic Reduct of information T.  

RED(T, D): Decision relative reduct of T. 

RED(B, D): Decision relative reduct of B with 

respect to subatable . 

DR(T, ) = ∩π∈P (T) RED(B, D) 
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Discretization 

• Boolean reasoning  

• Using positive region POS of class  

A supervised ( labelled data) grouping- 
maximizing the cardinality of POS𝑎𝑖

(𝐶𝑝) for 

numeric values of attribute ai, with respect to 
decision class 𝐶𝑝using a rough membership 

function 𝑓𝑎𝑖,𝑐𝑝  



Discretization 

Rough membership Function 𝑓𝑎𝑖,𝑐𝑝:  𝑉𝑎𝑖
→ 𝑅 

arg𝑚𝑎𝑥 𝑓𝑎𝑖,𝑐𝑝(𝑥)=𝑥∈𝐼⊆𝑉𝑎𝑖
 𝑥

𝑐𝑎𝑟𝑑(𝑎𝑖,𝐼𝑋𝐶𝑝
)

𝑐𝑎𝑟𝑑(𝑋𝑎𝑖,𝐼
)

   

Where,  

             Xai,I 
= {x| x  U, ai(x) I, I ⊆ 𝑉𝑎𝑖

} and, 

            𝑎𝑖,𝐼𝑋𝐶𝑝
= { x| ai(x) I, I ⊆ 𝑉𝑎𝑖

, D(x) = cP} 

Also,   POSai
 (D) =  {𝑎𝑖𝑋: 𝑋 ∈ [𝑥]D} 
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Reduct: RDT for Classification  

Achieve Dimension Reduction using reducts 
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RDT Experiment 
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RDT Experiment 



Reduct in other models  

• Applied to Covering algorithm 

• Applied to Cluster analysis 
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Reduct based Covering Algorithm 
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Reduct based Covering Algorithm 
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Reduct based Covering Algorithm 
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Reduct based Cluster Analysis  

• Iris Data 
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Reduct based Cluster Analysis 



Variable Precision RS: Approximate 
Core 

• R = {R1, R2, ..., Rn} Set of all reducts 
Core = R1  R2  ...  Rn  

• A = R1  R2  ...  Rn  

 | A| = m 

• core  core  A 

Approximate core - (core: ') where,  

‘ is the degree of approximation of the set 
core a superset of core.  
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Approximate Core      Cont. 

Approximate core a superset of core.  

C1: (core: 1)  core, say {a1} 

C2: (core: 0.98)  {a1, a5} 

C3: (core: 0.95)  {a1, a2, a5, a7} 

C4: (core: 0)  {ai: ai  A} 

• The additional attribute added to core from A is 
selected from smallest reduct in R. 

• Approximate core instead of reduct RDT core:  
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Approximate Core: RDT core:  
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RDT core:  
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RDT core:  



Dynamic Reduct 

Dynamic RDT Dynamic reduct based decision tree 
for handling noise. 

 Information System T = (U, A, V, F), where A = C  
D 

C: Conditional attributes  
D: Decision attribute 

Let power set of T be P(T). A subtable  of T is a 
member of P (T) with respect to the attribute set 
A.  
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Dynamic Reduct 
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Let a subtable  corresponding the attribute set 

 P (T). 

DR(T, ): Dynamic Reduct of information T.  

RED(T, D): Decision relative reduct of T. 

RED(B, D): Decision relative reduct of B with 

respect to subatable . 

DR(T, ) = ∩π∈P (T) RED(B, D) 
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Dynamic Reduct based RDT: Nutrition 
Dataset (Real) 
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Discretization 

• Boolean reasoning  

• Using positive region POS of class  

A supervised ( labelled data) grouping- 
maximizing the cardinality of POS𝑎𝑖

(𝐶𝑝) for 

numeric values of attribute ai, with respect to 
decision class 𝐶𝑝using a rough membership 

function 𝑓𝑎𝑖,𝑐𝑝  



Discretization 

Rough membership Function 𝑓𝑎𝑖,𝑐𝑝:  𝑉𝑎𝑖
→ 𝑅 

arg𝑚𝑎𝑥 𝑓𝑎𝑖,𝑐𝑝(𝑥)=𝑥∈𝐼⊆𝑉𝑎𝑖
 𝑥

𝑐𝑎𝑟𝑑(𝑎𝑖,𝐼𝑋𝐶𝑝
)

𝑐𝑎𝑟𝑑(𝑋𝑎𝑖,𝐼
)

   

Where,  

             Xai,I 
= {x| x  U, ai(x) I, I ⊆ 𝑉𝑎𝑖

} and, 

            𝑎𝑖,𝐼𝑋𝐶𝑝
= { x| ai(x) I, I ⊆ 𝑉𝑎𝑖

, D(x) = cP} 

Also,   POSai
 (D) =  {𝑎𝑖𝑋: 𝑋 ∈ [𝑥]D} 
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Discretization using POS  
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Discretization using POS 

• Result-1  
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Discretization using POS 

• Result-2 
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Discretization using POS 

• Result-3 
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Granulation Tree 
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Granulation Tree 
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Clustering using Granules 

Data Description 
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Clustering using Granules 



Histon for Image processing using 
Rough Sets  

• Let an image I of size MN of L intensity levels 
𝑔𝑖,𝑗 ∈ 0, 𝐿 − 1 .  

• The histogram indicates the number of pixels 
along Y-axis corresponding intensity values 0-
255 along X-axis, indicate lower approximation 
or positive region.  

• For segmentation an intensity to identify 
different concepts in a data   
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Image Processing: Histogram 
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Rough Set: Histon 
Color images have three histograms each for R, G 
and B intensity values. For i  {R, G, B} and 0≤g L a 
histogram is  

 h(g) =   𝛿(𝐼 𝑚, 𝑛 − 𝑔)𝑁
𝑛=1

𝑀
𝑚=1 ; Where 𝛿(.) is 

the Dirac impulse function. 

Histon H(g)  

H(g) =   (1 + 𝑋 𝑚, 𝑛 )𝛿(𝐼 𝑚, 𝑛 − 𝑔)𝑁
𝑛=1

𝑀
𝑚=1    

Where, 𝑋 𝑚, 𝑛 =   
1 𝑑𝜏(𝑚, 𝑛) < 𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 , 𝑑𝜏(𝑚, 𝑛) 

indicates difference in intensities of a pixel (m,n) 
with its neighbours    
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Part -II 

• Spatial Data 

• Spatial Computing 
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Spatial & Remote Sensing Data:  
The Team 

Mining Spatial & Remote Sensing Data (Big Data Analytics) 
• Spatial Data Mining: A Machine Learning Approach, Dr. Anshu Dixit 

Ph.D. 2012 (IASRI) 
• “Change Detection Using Unsupervised Learning Algorithms for 

Delhi, India,” Asian Journal of Geoinformatics, Vol 13, No. 4, 12-15, 
2013, Hemant Kr. Aggarwal, M.Tech. 2013 (Ph.D. IIITD) 

• Active Learning for Semi-supervised Classification in Hyperspectral 
Remote Sensing Images, Monoj Pradhan (Ph.D) 

•  Semi-Supervised Classification, Prem Shankar (Ph.D) 
• Content-based Classification, Saroj Kumar Sahu (Ph.D) 
• Rough Set Based Extreme Learning Machine for Hyper Spectral 

Data Classification, Ankit Malviya (M.Tech) 
• Comparing Decision Tree and Markov Random Field based 

Classification for Spatial Data, Mahedra Gupta (M.Tech) 
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Spatial Data: Satellite Image 
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Spatial Data: Multidimensinal  

28/07/2016 
Summer School: Decision Making, Data 

mining, Knowledge Representation, 
UNIMIB 

50 



Spatial Data: Medical Images 
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Geo-Spatial… 
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Knowledge-oriented Remote Sensing 
Image Analysis  

  

 
 Hemant Kumar Aggarwal, Sonajharia Minz, 
“Change Detection Using Unsupervised Learning 
Algorithms for Delhi, India,” Asian Journal of 
Geoinformatics, Vol 13, No. 4, 12-15, 2013 
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Motivation 

• Knowledge-oriented Change Detection 

• Measure effectiveness of Machine Learning 
for Change Detection 

• Explore potential for dimensionality reduction 
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Experimental Results 

Original Water Vegetation Urban 

Features K-means Fuzzy C mean EM 
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Percentage of Pixels per Class 
Year Kmeans EM FCM Kmeans EM FCM Kmeans EM FCM 

1998 52.8 76.6 45.8 41.929 15.81 49.23 5.265 7.58 4.97 

1999 35.16 55.43 43.25 59.19 41.22 53.97 5.648 3.35 2.78 

2000 37.318 56 42.89 58.773 40.34  53.6 3.909 3.65 3.51 

2001 36.016 38.72 51.85 59.881 55.78 44.45 4.104 5.49 3.69 

2002 34.283 64.61 63.25 62.282 32.95 33.68 3.435 2.43 3.06 

2009 37.867 35.025 38.02 58.837 61.19 58.79 3.296 3.78 3.18 

2010 35.717 52.87 40.39 58.438 41.57   54.3 5.848 5.56 5.3 

2011 34.662 58.54 36.16 61.904 37.11 60.56 3.434 4.35 3.27 
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Total Percentage Change  
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             Class 

Algorithm 

 Water  Built-up  Vegetation 

K-means -0.26 2.85 -2.59 

EM -0.46 3.04 -2.58 

FCM -0.24 1.62 -1.38 



Conclusion 

• Partitioning based methods are more effective 
than probabilistic and fuzzy. 

• Decrease in vegetated area and increase in 
urban area. 

• Dimensionality Reduction by 50% 

Future Work 

• Environmental Footprint and More – Spatial 
Footprint Change Discovery  
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Rough Set based classification of 
Hyperspectral Data (Master’s Dissertation: Ankit Malvia ) 
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Framework 
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Results: Dimension Reduction 
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S.N.  Datasets                 Elapsed time  Total Bands  No. Selected bands  Selected Features 
  

1.  Indian Pines  1156.42  200  4  B1, B22, B43, B84   

2.  Pavia University scene  72165.33  103  4  B1, B2, B87, B103   
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Spatial Computing 

Challenges pertaining to Data Characteristics 

• Not iid – Spatial Auto correlation (Tobler’s First 
Law of Geography – nearby objects are related 
to each other more than the objects at a 
distance) 

• Class imbalance problem (challenge to 
Statistical and probabilistic methods) 

• Classification – very small labelled data 
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Spatial Computing: Patterns 
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Spatial Patterns: Hotspot 
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Spatial Computing: Patterns 
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Patterns based on 2D plane 
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Spatial Patterns: Spherical Earth 
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Spatial Computing: Transformative 
Technology 

• GPS 

• Remote Sensing 

• GIS 

• Spatial Database Management Systems 

• Spatial Statistics 
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Spatial Computing: Opportunities 

• Short Term 
– Spatial Predictive Analysis 

– Geocollaborative Systems 

– Moving Spatial Computing 

• Long Term 
– Fusion to Synergies 

– Sensors to Clouds 

– Spatial Cognitive first 

– Geoprivacy 
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Spatial Computing 

• Shashi Shekhar: McKnight Distinguished 
University Professor, Department of Computer 
Science at the University of Minnesota, MN, 
USA 

• https://vimeo.com/148128607  

• http://cacm.acm.org/videas/sptial-computing 
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https://vimeo.com/148128607
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Thank YOU 
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