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Borders

» In case of “classical sets”, there is no ambiguity, whether an
element belongs to a set or not: either a € X or a ¢ X

» The border between the set X and its complement X€ is
edge-sharp: no element can sit in the border

> In case of “rough sets”, the situation is different. The border
B(X) = X4\ XV is the area of uncertainty.

» If a € B(X), then both in X and outside X there are elements
to which a is R-related — here R is the relation representing
our knowledge

» Based on this difference, the structure of rough sets is quite
different from the structure of the “classical’ sets



Definition of rough sets

Let R be a relation representing our knowledge and let rough
approximations be formed by this knowledge.
» A rough equivalence relation: two sets X and Y are
roughly equivalent, denoted by X = Y, if XY = Y7 and
XA =YA
» This means that X = Y <= the set X and Y look exactly
similar in view of the knowledge R
» The equivalence classes [X]= = {Y | X = Y} of = are called
rough sets

» This really is the original (1981) definition by Pawlak

» The relation = can be viewed as an indiscernibility relation,
but between sets.



Example

Let U= {a, b, c} and let E be an equivalence on U such that its
equivalence classes are {a, b} and {c}.

X XY XA

0 [} 0

{a} |0 {a, b}
{py |0 {a, b}
{ct | {cr | A{c}
{a,b} | {a,b} | {a, b}
{a,c} | {c} u
{b,c} | {c} U

U ) )

Rough sets are:

(i): {03, (i): {{a},{b}}, (ii)): {{c}},
(iv): {{a,b}},  (v): {{a,c} {b,ct},  (vi): {U}



Ordered set of rough sets

» Considering rough sets as equivalence classes of sets is not
very practical.

» On the other hand, each rough set [X]= is uniquely
determined by the approximation pair (XV, X4).

» We use approximation pairs instead of equivalence classes

» The set of all rough sets is RS = {(XY,X4) | X C U}

» We obtain an ordered set RS = (RS, <) by ordering RS by
the coordinatewise order:

(X", X" < (YV,Y4) « X" CY" and XA C yA



Example

In our previous example,
RS ={(0,0), (0,{a,b}), ({a,b},{a, b}),
({c}{c}), ({c}, U), (U, U)}
The ordered set RS has the following structure:
U,0)

({a, b}, {a,b}) ({c},U)

0, {a,b}) ({c},{c})

It seems to be isomorphic to 2 x 3



Structure of “classical sets”

» The ordered set (p(U), C) of all subsets of U is a complete
lattice such that for all H C p(U):

VH=H and ANH=H
» In particular, X VY =XUYand XAY =XNY

» (p(U),u,n,<,0,U) is a Boolean algebra, where X< = U\ X
is the complement of X.

> It is known from the general lattice-theory that a Boolean
lattice is atomistic if and only if it is completely distributive

» Atoms of p(U) are the singletons {x} for x € U.
> p(U) =2Y.



Structure of “classical sets”

Let U ={a, b,c}. The complete lattice (p(U), Q) is:




The structure of RS in case of an equivalence relation

> Let RS be determined by an equivalence relation E.

» The cartesian product p(U) x p(U) ={(X,Y) | X,Y C U}
is a complete lattice such that for each subset {(Xj, Yi)}ier:

VX, vy = (UxiJYi) and A(Xi, ve) = (X[ Y7)

iel i€l i€l i€l i€l i€l

» RS is a complete sublattice of p(U) x p(U)

» This is not easy to prove — it needs to show for a subset
{(X,'V,X,'A)},'G/ - RS, that e.g. (Uielev7Uiel X,'A) is a
rough set, that is, there exists a set Z such that

V=JX" and Z4 = X4

iel i€l



The structure of RS in case of an equivalence relation

v

p(U) x p(U) is (completely) distributive = RS is
(completely) distributive

v

The set of completely join-irreducible elements of RS is

{(0, E(x)) - [E(x)| = 2} U{(E(x), E(x)) : x € U}

v

The set of atoms of RS is

{(0, E(x)) : [EC)| = 23 U{({x} {x}) : E(x) = {x}}

RS is spatial, but not atomistic

v

» RS is not complemented, so it is not a Boolean lattice nor an
ortholattice



Regular double Stone algebras

» In a bounded lattice L, x* is a pseudocomplement of x, if
xAx*=0and x A a=0 implies a < x* (unique)

> (XV,XA)* — (X‘C,XAC)

» Dual pseudocomplement x™: xVxT =land xVa=1
implies a > xT

> (ijxA)—i- — (XVC’XVC)

» Double Stone algebra: x*V x* =1 and x™ AxTT =0

» A double Stone algebra is regular if x* = y* and x™ = y*
imply x = y.

> If determined by an equivalence, RS forms a regular double
Stone algebra

» Regular double Stone algebras can be identified with 3-valued
tukasiewicz—Moisil algebras and semi-simple Nelson algebras



Rough sets determined by equivalences

» RS 22! x 37, where | = set of singleton E-classes and J =
set of non-singleton E-classes.

Remark

» The identity relation Idy of U can be seen to represent
complete knowledge in the sense that each element has a full
identity, that is, every element can be discerned from the
others.

> (XY, XA) = (X, X) for all X C U.
» This means that RS can be identified with p(U), and
RS =2 p(U) =2 2Y in case E = 1dy.



Example

Let R be the following equivalence on U = {a, b, c,d, e, f, g, h}

oO—C0O—=0 O o—0O0—0——=0
a d h b c e f g
Cl CZ CS

The rough set algebra RS is:
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Rough sets defined by quasiorders

We will consider results from these articles:

[1] Jouni Jarvinen, Sdndor Radeleczki, and Laura Veres, Rough
sets determined by quasiorders, Order 26 (2009), 337-355

[2] Jouni Jarvinen and Sandor Radeleczki, Representation of
Nelson algebras by Rough Sets Determined by Quasiorders,
Algebra Universalis 66 (2011), 163-179.

[3] Jouni Jarvinen, Piero Pagliani, Sdndor Radeleczki, Information
completeness in Nelson algebras of rough sets induced by
quasiorders, Studia Logica 101 (2013), 1073-1092.

[4] Jouni Jarvinen and Sandor Radeleczki, Monteiro spaces and
rough sets determined by quasiorder relations: Models for
Nelson algebras, Fundamenta Informaticae 131 (2014)
205-215.



RS induced by a quasiorder

Theorem

If R is a quasiorder on a non-empty set U, then RS is a complete
sublattice of p(U) x p(U), that is,

\/ XV XA (U : 7UXiA)
iel iel iel

and

/\Xv XA) (ﬂ ,mXiA>

icl i€l i€l

Since RS is a complete sublattice of p(U) x p(U), we may write:

Corollary

RS is a completely distributive lattice



In case of quasiorders, RS is algebraic
An element x of a complete lattice L is compact if for every
SCL x<\S = x<\/F for some finite F C S.
A complete lattice L is algebraic, if its every element is a join of
compact elements.
Example

(a) (p(U), <) is an algebraic lattice. Within this complete lattice,
the compact elements are exactly the finite sets.

(b) p(U) x p(U) is an algebraic lattice, because the product of
algebraic lattices is algebraic.

Because any complete sublattice of an algebraic lattice is algebraic,
we may write:

Corollary

RS is an algebraic lattice.



Properties of algebraic lattices

For any lattice L, the following are known to be equivalent:
(a) L is isomorphic to an Alexandrov topology
(b) L is algebraic and completely distributive

(¢) L is distributive and doubly algebraic, that is, also the dual L9
of L is algebraic

(d) L is algebraic, distributive and spatial

» Since RS is algebraic and completely distributive, it has the
properties (a)—(d)

> In particular, RS is isomorphic to some Alexandrov topology

» How to get this Alexandrov topology we will find later

» RS forms a Heyting algebra.



Completely join-irreducible elements

Proposition

Let RS be determined by a quasiorder.
(a) The set of completely join-irreducible elements of RS is

T ={0, {34 | IR = 2L U{(R(x), R(x)*) | x € U}

(b) The lattice RS is spatial



Kleene algebras

A Kleene algebra is a structure (A,V,A,~,0,1) such that Ais a
0,1-bounded distributive lattice and for all x,y € A:

(K1) ~~x =x

(K2) x <y ifand only if ~vy < ~x

(K3) x A~x <yVr~y

A bounded distributive lattice A with ~ satisfying (K1) and (K2) is
a De Morgan algebra

Proposition

The algebra RS = (RS, U, N, ~, (0,0), (U, U)) is a Kleene algebra,
where ~ is defined

N(Xv’XA) — (XCV,XCA) — (XAC,XVC)



Constructive logic with strong negation (Nelson logic) |

» Constructive logic with strong negation was introduced by
Nelson (1949) and independently by Markov (1950). It is
often called simply as Nelson logic.

» It is an extension of the intuitionistic propositional logic by
strong negation ~.

» There are generally two different ways to refute a sentence A.

» One way is by reductio ad absurdum: by proving that A

implies absurdum. This role of negation is played both by the
intuitionistic negation and by the classical negation

» —Ais defined to be A — |



Constructive logic with strong negation (Nelson logic) I

» Another way to refute A is to construct a counterexample of
A. The intuitive reading of ~A is “a counterexample of A".

» Sentence A may have many counterexamples and each of
them have to contradict A. For instance, a counterexample of
the sentence “This apple is red” is for instance “This apple is
green” or “This apple is yellow"

» Axioms can be interpreted as “algorithms” of constructing
counterexamples of compound sentences by means of given
counterexamples of their components.

» The name strong negation comes from the fact that the
formula ~A — —A is a theorem of the logic.



Nelson logic — or Constructive logic with strong negation

(N1)

(N2)

~A — (A— B)

a counterexample of A contradicts A, that is, AN\ ~A implies
everything

~(A— B) < AAN~B

a counterexample of A — B can be constructed by the conjunction
of A with a counterexample of B

~(ANB) < ~AV ~B

a counterexample of a conjunction is a disjunction of
counterexamples of its components

~(AV B) <> ~AN~B

a counterexample of a disjunction is a conjunction of
counterexamples of its components

~=-A+ A

A is a counterexample of —A

~~A A

A is a counterexample of a counterexample of A



Quasi-Nelson and Nelson algebras

> A quasi-Nelson algebra is a Kleene algebra (A, V, A, ~,0,1) such
that for each pair a and b of its elements, the element

a=~aVb
exists. Here = denotes the Heyting implication in (A, <):

c<a=b iff anc<h

» This element is denoted a — b and called weak relative
pseudocomplement. Hence,

c<a—b iff anc<~aVhb

> Therefore, every Kleene algebra whose underlying lattice is a
Heyting algebra forms a quasi-Nelson algebra.

Proposition

RS = (RS, U, N, ~, (0,0), (U, U)) is a quasi-Nelson algebra.



Nelson algebras of rough sets determined by quasiorders

A Nelson algebra is a quasi-Nelson algebra (A, vV, A, ~,—,0,1)
satisfying:
(anb) wc=a—(b—c¢)

Theorem

For any quasiorder, (RS,V,\,—,~,0,1) is a Nelson algebra such
that:

XV, X8V (YT, YA = (XTU YT, X U YA
XV, XA (YT, YA = (X" N YT, XA Y4
SR O = D N = DLE el
(X, X4 5 (Y, YY) = (X" U Y, X7 U Y4)
0=(0,0)
1=(U,U)



Weak negation and semi-simple Nelson algebras

» In each Nelson algebra, an operation — can be defined as
—a = a — 0. The negation — is called weak negation.

> A Nelson algebra is semi-simple if aV —a=1

> It is known that RS defines a semi-simple Nelson algebra
<= RS is defined by an equivalence



Kleene algebra defined on an algebraic lattice

If a Kleene algebra A = (A, V, A, ~,0,1) is defined on an algebraic
lattice, then actually the underlying lattice A is doubly algebraic
and distributive. Thus, A is isomorphic to an Alexandrov topology.

Then, we may define for any j € J the element

= \fxeAlx£~j}

The map g: J — J satisfies:

(J1) if x <y, then g(y) < g(x)

(12) g(g(x)) = g(x)

(J3) x < g(x) or g(x) <

(J4) x,y < g(x),g(y) |mp||es that there is z € J such that

x,y <z<g(x),8(y)



Example

> Let us consider the Kleene algebra such that:
NO:]_, ~a= e, Nb:d’ ~C=20C

> Because the algebra is finite and distributive, it defines a Heyting
algebra and so it forms a quasi-Nelson algebra.

» J ={a,b,d, e} and the map g is such that g(a) = d and g(b) = e

> Now a, b < g(a), g(b), but there exists no k € J such that
a,b< k <g(a),g(b) = Thisis not a Nelson algebra



Represention theorem

Theorem

If A is a Nelson algebra defined on an algebraic lattice, then there
exists a set U and a quasiorder R on U such that A = RS.

~b=e

~0=1
For instance, a = b:=a= (~aVb)=a=(fVb)=a=f=1,
where x = y :=\/ {z | z A x < y} is the Heyting implication.



Example of the construction



Example of the construction

We define a mapping p: J — J:
N if j < g()
o) = { g(j) otherwise

In terms of p, we define a quasiorder R on U = J by

xRy <= p(x) < ply).

p(f)=b
e f
ple) =a d
d
pld)=d
a e b
p(b) =b
a b



Example of the construction

(ade,U) (bdf, U)

a b ! (0, abef)

(0, ae) @,0f)

The relation R

RS



Monteiro spaces and Alexandrov topologies of rough sets
defined by quasiorders

Let M = (X, <, g) be a structure such that (X, <) is a partially
ordered set and g is a map on X satisfying:
(J1) if x <y, then g(y) < g(x),
(J2) g(g(x)) = &(x),
(J3) x < g(x) or g(x) <
(J4) if x,y < g(x),g(y), then there is z € X such that
x,y <z<g(x),8(y).
M is called a Monteiro space.
Proposition

Let A be a Nelson algebra defined on an algebraic lattice. If we
define an order < on J by setting

xdy <= y <xinA,

then (J,<,g) is a Monteiro space.



Results by Vakarelov (1977)?

» For an ordered set (X, <), we denote by U/(X) the set of all
upward-closed subsets of X.

» U(X) is an Alexandrov topology. It forms also a Tg-space:
for x # y, there is an open set which contains one of these
points, but not the other.

» Each Monteiro space M = (X, <, g) defines a Nelson algebra

(Z/{(X), U7 m? %’ N? ®7 X)7

where:

~A={xeX|g(x)¢ A} and A= B=A= (~AUB)

v

Above = is the Heyting implication of /(X)

!Dimiter Vakarelov, Notes on N-lattices and constructive logic with strong
negation, Studia Logica 36 (1977), 109-125.



Example




Proposition
The following structures can be considered equivalent, because
they determine each other “up-to-isomorphism”:
(i) Rough sets by quasiorders
(ii) Nelson algebras defined on algebraic lattices
(iii) Nelson algebras defined on T-spaces that are Alexandrov
topologies
(iv) Monteiro spaces



Last results for quasiorder-based rough sets

Proposition

Let A be any Nelson algebra. Then, there exists a set U and a
quasiorder R on U such that A is isomorphic to a subalgebra of RS.

Theorem
Let ¢ be a formula of Nelson logic. TFAE:
1. ¢ is a theorem

2. ¢ is valid in every finite rough set-based Nelson algebra
determined by a quasiorder.



Rough sets determined by tolerances

The considered results are from the article:

[1] Jouni Jarvinen and Sandor Radeleczki, Rough sets determined
by tolerances, Approximate Reasoning 55 (2014), 1419-1438



Rough sets determined by tolerances

Let us consider the following tolerance:

Oe

C
LY

O«a

RS is not necessarily a lattice:




Rough sets determined by tolerances

A complete subdirect product L of an indexed family of
complete lattices {L;};c/ is a complete sublattice of the direct
product [];c, L such that the canonical projections 7; are all
surjective, that is, 7;(£) = L;.

The projections 7; are complete lattice homomorphisms, that is,
they preserve all meets and joins.

Proposition

RS is a complete lattice if and only if it is a complete subdirect
product of the complete lattices p(U)Y and p(U)A.



Lattice operations in RS |

Let R be a tolerance on U. Recall that
» o(U)Y is a complete lattice such that for H C p(U):
VX'=(UJXxMD*" and AX'=[X"
XeH XeM XeH XeH

» o(U)* is a complete lattice such that for H C p(U):

V xt=Jx* and A Xt=(()xH™

XeH XeH XeH XeH



Lattice operations in RS |l

We have that if RS is a complete lattice, then it must be a
complete sublattice of the product p(U)Y x p(U)*

Let (X;¥,Xi*) C RS. The meet and join are defined by:

/\ XV, X:A) (ﬂ ﬂXiA)VA>
iel iel iel
and

\/(X’_V7XI_A) _ <(UXi')A',UXiA>

icl i€l i€l



Example
Let U = {a, b,c,d} and let R be the following tolerance
a b
dI:I c
Then RS has the following 11 elements: ((,0), (0,{a, b, c}),

0,0),
(0,{a,b,d}), (0,{a,c, d}), (0,{b,c,d}), (0, V), ({a}, U), ({b}, V),
({c}, U). ({4}, 0), (U, V)

The lattice is not distributive



A condition under which RS is a complete lattice

(C) For any R-path (a1,...,as) of 5 elements, there exist
1<i,j<5suchthat|i—j| >2and a;Raj.

O @, O O O
aq as as a4 as
Theorem

If R is a tolerance satisfying (C), then RS is a complete lattice.



Rough sets determined by tolerances

Theorem

Let R be a tolerance on U. Then RS is an algebraic completely
distributive lattice if and only if R is induced by an irredundant
covering of U.



Example: tolerance induced by an irredundant covering

Let U ={1,2,3,4,5} and suppose that R is the following
tolerance on U:

The tolerance R is induced by the irredundant covering

{R(1), R(2), R(3)}-



Example: tolerance induced by an irredundant covering

({1,2,4},0)
({1}, 0)
({1} {172=475}) a

0,{1,2,4,5}) (0,{2,3,4,5})

0,{1,4}) (@,{3,5})




Rough sets determined by tolerances

Proposition

Let R be a tolerance induced by an irredundant covering of U.
Then,
(RS,V, A, ~,(0,0),(U,V))

is a Kleene algebra, where
N(Xv7xA) — (XC',XCA) — (XAC7XvC).

This algebra is always also a quasi-Nelson algebra — but a Nelson
algebra only if the R is an equivalence.



